Civil Engineering, BS

Program Description

Civil engineers oversee construction projects, including designing, constructing, supervising, and maintaining road systems and the accompanying infrastructure, buildings, airports, and systems for water treatment, hydroelectricity, and more.  Because there are so many different aspects of civil engineering, many civil engineers choose to pursue a specialty. Popular specialties include construction engineering, geotechnical engineering, structural engineering, geospatial surveying engineering, environmental engineering, water resources engineering, transportation engineering, and coastal engineering.  The Civil Engineering curriculum prepares graduates to apply knowledge of mathematics through differential equations, calculus-based physics, chemistry, and at least one additional area of basic science; to apply probability and statistics to address uncertainty; to analyze and solve problems in technical areas appropriate to civil engineering; to conduct experiments in technical areas of civil engineering and analyze and interpret the resulting data; to design a system, component, or process in civil engineering contexts; to include principles of sustainability in design; to explain basic concepts in project management, business, public policy, and leadership; and to analyze issues in professional ethics.

Program Educational Objectives

In accordance with ABET accreditation requirements, the Program Educational Objectives (PEOs) describe the professional accomplishments that Civil Engineering graduates are expected to achieve, within a few years of graduation. The PEOs are:

  1. Within two years of graduation from TAMU-CC, our graduates who have chosen to pursue a career in engineering or a related field will be working in industry, government, construction, or other professional service as civil engineers, or will be pursuing graduate degrees in civil engineering or post-baccalaureate degrees in other fields, such as law, business, or medicine.

  2. Within five years of graduation from TAMU-CC our graduates who have chosen to pursue a career in engineering or a related field will have​

    • advanced in their careers as indicated by obtaining promotions and positions of leadership, awards, recognitions as subject matter experts, and/or registration as professional engineers or in other professional disciplines; or by entrepreneurial activities, products or processes developed, patents, and/or publications;
    • demonstrated the ability to increase their knowledge and expertise through continuing education or advanced degrees; and
    • contributed to the improvement of the profession and of society through research, national and/or international collaboration, and/or professional and public service including mentoring.

Student Learning Outcomes

Graduates will have:

  1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
  2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
  3. an ability to communicate effectively with a range of audiences
  4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
  5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
  6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
  7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

Fundamentals of Engineering (FE) Exam

All civil engineering students are encouraged to take the Fundamentals of Engineering (FE) exam.  This is exam is an important step toward licensure as a Professional Engineer (P.E.), which many civil engineers find useful and necessary in their careers.  Close to the end of the B.S. degree program is an excellent time to take the exam, because the student has the best preparation for the exam at that point in the student’s academic career. 

Admission from pre-engineering

For all students admitted into a pre-engineering program at TAMU-CC who wish to transfer into one of the TAMU-CC engineering programs (CEEN, EEEN, IEEN, MEEN), the cumulative GPA for all MATH, CHEM, PHYS, ENGR, COSC, CEEN, EEEN, IEEN, or MEEN courses that appear in the CEEN, EEEN, IEEN, or MEEN program curricula, plus any ENTC courses, taken at TAMU-CC, or their equivalents taken at other institutions, should be 2.5 or greater to be admitted into the CEEN, EEEN, IEEN, or MEEN programs at TAMU-CC.  There should be a minimum of at least 12 hours of such courses taken at TAMU-CC or elsewhere before a transfer / admission to CEEN, EEEN, IEEN, or MEEN may be considered.  All such students must also meet the requirements to take MATH 2413 Calculus I (4 sch) if they have not already done so.

Master of Business Administration (MBA) Option

Civil engineering students who have completed 96 credit hours toward the Civil Engineering B.S. degree and earned a cumulative GPA of 3.0 or higher may elect the MBA option in senior year. Students who elect the MBA option are required to take three MBA foundation courses to satisfy the Technical Elective Block requirements:

ACCT 5312Foundations of Accounting3
ECON 5311Foundations in Economics3
FINA 5311Financial Management Concepts3

Students who plan to elect the MBA Option are encouraged to have summer internship experience before senior year, and will be able to complete an MBA degree study with 2 regular semesters and 1 summer session beyond a Civil Engineering B.S. degree study.

General Requirements

The Civil Engineering curriculum consists of a minimum of 126 credit hours. It can be divided into five main areas:  

Requirements Credit Hours
First-Year Seminars (when applicable)1 0-2
Core Curriculum Program 42
Common Engineering, Math and Science Courses 48
Required Civil Engineering Courses 24
Capstone Project 3
Technical Elective Block 9
Total Credit Hours 126-128
1

Full-time, first time in college students are required to take the first-year seminars.

Program Requirements

Full-time, First-year Students
UNIV 1101University Seminar I1
UNIV 1102University Seminar II1
Core Curriculum Program
University Core Curriculum42
Civil Engineering students should take:1
General Chemistry I
Calculus I
Calculus II
University Physics I
Common Engineering, Math and Science Courses
General Chemistry I (included in University Core)
COSC 1330Programming for Scientists, Engineers, and Mathematicians3
ENGR 1201Introduction to Engineering2
ENGR 1312Engineering Graphics I3
ENGR 2325Statics3
Choose one of the following two courses:4
Physical Geology
Geospatial Systems I
ENGR 2326Dynamics3
ENGR 3315Fluid Mechanics3
ENGR 3320Strength of Materials3
ENGR 3322Materials Science3
ENGR 4240Project Management2
ENGR 4420Engineering Lab Measurements4
Calculus I (included in University Core)
MATH 2414Calculus II (3 lecture hours included in University Core)1
MATH 2415Calculus III4
MATH 3315Differential Equations3
MATH 3342Applied Probability and Statistics3
University Physics I (included in University Core)
PHYS 2426University Physics II4
Required Civil Engineering Courses
CEEN 2315Geomatics and Surveying Engineering3
CEEN 3320Geotechnical Engineering I3
CEEN 3321Structural Analysis3
CEEN 4323Structural Steel Design3
CEEN 4325Reinforced Concrete Design3
CEEN 4304Construction Materials Design3
CEEN 4306Transportation Engineering3
CEEN 4312Hydraulics and Hydrology3
Technical Electives Block
These electives provide students with the option to take courses that apply to their field of study. Students must complete 9 hours of elective courses. These may include upper-division Engineering (CEEN, EEEN, IEEN, MEEN) and 4000-level Engineering Technology (ENTC) courses outside of the required courses in their degree plans, any 4000-level MATH, COSC, BIOL, CHEM, or PHYS courses, the specified courses in the 5-year BS/MBA program, and other courses approved by the Department of Engineering.9
Capstone Project
ENGR 4370Capstone Projects3
Total Hours128
1

The 3 lecture hours in MATH 2413 Calculus I (4 sch), CHEM 1411 General Chemistry I (4 sch), and PHYS 2425 University Physics I (4 sch) satisfy the required 3 and 6 core curriculum hours in math and science, respectively. The 1 lab hour from each of these three courses, and the 3 lecture hours from MATH 2414 Calculus II (4 sch), satisfy the 6-hour component area option requirement in the core curriculum. Students transferring to Texas A&M University - Corpus Christi from other institutions may have various means for fulfilling the core curriculum. Please refer to the “General Education Requirement” in the catalog section entitled “Undergraduate Programs.”

Capstone Project

All civil engineering students must complete a senior-level capstone project in ENGR 4370 Capstone Projects (3 sch) (3 sem. hrs.). Students will work with practicing engineers and engineering faculty. The Capstone Project will give engineering students practical, professional experience to prepare them for careers in civil engineering.

Course Sequencing

Plan of Study Grid
First Year
FallHours
ENGL 1301 Writing and Rhetoric I 3
HIST 1301 U.S. History to 1865 3
UNIV 1101 University Seminar I 1
MATH 2413 Calculus I 4
CHEM 1411 General Chemistry I 4
ENGR 1201 Introduction to Engineering 2
 Hours17
Spring
ENGL 1302
Writing and Rhetoric II
or Foundation of Communication
3
ENGR 1312 Engineering Graphics I 3
UNIV 1102 University Seminar II 1
MATH 2414 Calculus II 4
COSC 1330 Programming for Scientists, Engineers, and Mathematicians 3
PHYS 2425 University Physics I 4
 Hours18
Second Year
Fall
ENGR 2325 Statics 3
MATH 3315 Differential Equations 3
HIST 1302 U.S. History Since 1865 3
MATH 2415 Calculus III 4
PHYS 2426 University Physics II 4
 Hours17
Spring
ENGR 2326 Dynamics 3
Language, Philosophy & Culture Core Requirement 3
ENGR 3322 Materials Science 3
GEOL 1403
Physical Geology
or Geospatial Systems I
4
 Hours13
Third Year
Fall
POLS 2305 U.S. Government and Politics 3
MATH 3342 Applied Probability and Statistics 3
ENGR 3315 Fluid Mechanics 3
ENGR 3320 Strength of Materials 3
CEEN 2315 Geomatics and Surveying Engineering 3
 Hours15
Spring
POLS 2306 State and Local Government 3
CEEN 3320 Geotechnical Engineering I 3
Technical elective 3
CEEN 4312 Hydraulics and Hydrology 3
CEEN 3321 Structural Analysis 3
CEEN 4304 Construction Materials Design 3
 Hours18
Fourth Year
Fall
ENGR 4420 Engineering Lab Measurements 4
ENGR 4240 Project Management 2
Social and Behavioral Sciences Core Requirement 3
CEEN 4325 Reinforced Concrete Design 3
CEEN 4323 Structural Steel Design 3
 Hours15
Spring
ENGR 4370 Capstone Projects 3
CEEN 4306 Transportation Engineering 3
Technical elective 3
Creative Arts Core Requirement 3
Technical elective 3
 Hours15
 Total Hours128

Note: Total Hours: 126 (128 with UNIV 1101 & 1102)

Civil Engineering Courses

CEEN 2315  Geomatics and Surveying Engineering  
3 Semester Credit Hours (3 Lecture Hours)  

(3:0) Concepts, principles, and applications of surveying methods and technology for planar measurement, geo-positioning and mapping, and civil engineering project design and management are introduced. Topics include: land surveying methods for field measurement; principles of distances, elevation and angles; geodetic datums and coordinate systems; topographic mapping; basic error theory in measurement and computational adjustments; traverse calculations; introduction to Global Positioning System (GPS). Computational exercises to process, analyze, and adjust survey data will provide practical experience in civil survey design and assessment. 

Prerequisite: MATH 1316 or 2413.

CEEN 3320  Geotechnical Engineering I  
3 Semester Credit Hours (3 Lecture Hours)  

(3:0) Geotechnical engineering focuses on how soil supports and affects the performance of structures built on or below the earth's surface. This course will introduce the terminology used in geotechnical engineering and provide a basic understanding of important geotechnical principles and analytic methods. The topics to be covered in this class includes: index soil properties and soil classification; soil permeability and pore water movement; soil stresses; soil compressibility, consolidation and settlement; shear strength of soil; engineering soil properties and measurement. 

Prerequisite: ENGR 3315 and 3320.

CEEN 3321  Structural Analysis  
3 Semester Credit Hours (3 Lecture Hours)  

Analysis of statically determinate structures including beams, trusses and arches; methods of determining deflections of structures; influence lines and criteria for moving loads; analysis of statically indeterminate structures including continuous beams, frames and trusses; introduction to structural dynamics; structural engineering design process; design loads according to the ASCE/SEI 7 code; wind and earthquake loads.

Prerequisite: ENGR 3320.

CEEN 3330  GIS for Civil and Environmental Engineering  
3 Semester Credit Hours (3 Lecture Hours)  

(3:0) Introductory design principles presented on the use of geographic information system (GIS) technology for modeling and analysis of civil and environmental engineering systems. Introduction to the integration of geospatial data and analysis for decision making and management for site selection, mitigation, change analysis, modeling and assessment. Topics covered include map projections and georeferencing, vector and raster data models, acquisition and manipulation of data, cartography, current topics, data quality, and basic spatial analysis. The course integrates commercial GIS software (ESRI ArcGIS) for performing engineering analysis and problem solving. Students will participate in both individual software labs and team projects.  

Prerequisite: COSC 1330 and CEEN 2315.

CEEN 4302  Remote Sensing  
3 Semester Credit Hours (3 Lecture Hours)  

Provides the foundations to interpret, process, and apply remotely sensed data acquired by satellites and sub-orbital platforms (aircraft, UAVs) for mapping and analysis of our natural and built environment.  Principles of electromagnetic energy-matter interaction, remote sensing systems and data characteristics, digital image processing, and information extraction methods will be covered.  Included is treatment of: aerial photogrammetry; multispectral, thermal, and hyperspectral sensing; earth observation satellites; radar and lidar; emergent topics.  Emphasis will be on their use for geospatial and environmental applications.  Offered Fall.

Prerequisite: PHYS 2425 and GISC 3300.

CEEN 4304  Construction Materials Design  
3 Semester Credit Hours (3 Lecture Hours)  

(3:0) The course provides instruction on civil and construction engineering materials used in the construction of highway structures such as pavements, bridges, retaining walls, box culverts, etc. In particular, the course concentrates on the engineering properties of aggregates, metals, portland cement concrete (PCC) and hot-mix asphalt (HMA) as well as the mixture design of PCC and HMA. The course targets those interested in civil engineering or construction engineering and management.

Prerequisite: ENGR 3320.

CEEN 4306  Transportation Engineering  
3 Semester Credit Hours (3 Lecture Hours)  

(3:0) This course will give an introduction to the basic concepts, theory, and practice of transportation engineering as related to planning, design, and operations of the transportation system. The topics to be covered in this class includes: fundamental principles in planning, design and operation of transportation systems; issues and challenges in transportation; driver and vehicle performance capabilities; highway geometric and pavement design principles; traffic analysis and transportation planning.

Prerequisite: CEEN 2315.

CEEN 4310  Water Resources Engineering  
3 Semester Credit Hours (3 Lecture Hours)  

(3:0) This course will give an overview of the basic concepts, analysis methods, and design procedure. The topics to be covered includes: hydraulic processes, hydrological cycle, streamflow prediction, uncertainty analysis, water demands, water distribution systems, reservoir and dams, urban stormwater drainage, and water resources planning and management.

Prerequisite: ENGR 3315.

CEEN 4312  Hydraulics and Hydrology  
3 Semester Credit Hours (3 Lecture Hours)  

(3:0) This course will give an introduction to the basic concepts, theory, and analytic methods of hydraulics and hydrology. The topics to be covered in this class includes: water flow through pipes and pumping systems, water flow through open channels and hydraulic structures, watershed hydrology, and urban sewer systems.

Prerequisite: ENGR 3315.

CEEN 4322  Geotechnical Engineering II – Coastal Environment  
3 Semester Credit Hours (3 Lecture Hours)  

(3:0) This course introduces key concepts and basic analysis and design techniques in geotechnical engineering for coastal environments. Emphasis is on the interaction between oceanic dynamic processes (waves, currents, tides, and sediment transport) and coastal regions (harbors, structures, beaches and estuaries) and on the engineering approaches necessary to prevent adverse effects caused by this interaction. Geotechnical aspects of coastal engineering projects will include design of traditional structures and exposure to softer coastal engineering techniques.

Prerequisite: CEEN 3320.

CEEN 4323  Structural Steel Design  
3 Semester Credit Hours (3 Lecture Hours)  

This class will provide students with a solid background on the design of structural steel elements according to the AISC specifications, including tension members, compression members, beams, beam-columns and base plates; design of bolted and welded simple connections; design of bolted eccentric connections; design of bolted and welded partially and fully restrained connections. Hands-on design experience and skills will be gained and learned through problem sets and a comprehensive design project. An understanding of real-world open-ended design issues will be developed.

Prerequisite: CEEN 3321 and 4304.

CEEN 4324  Structural Engineering  
3 Semester Credit Hours (3 Lecture Hours)  

(3:0) This class will provide students with a solid background on principles of structural engineering. Students will be exposed to the theories and concepts of both concrete and steel design and analysis both at the element and system levels. Hands-on design experience and skills will be gained and learned through problem sets and a comprehensive design project. An understanding of real-world open-ended design issues will be developed.  

Prerequisite: ENGR 3320 and MATH 3315.

CEEN 4325  Reinforced Concrete Design  
3 Semester Credit Hours (3 Lecture Hours)  

This class will provide students with a solid background on the behavior, design, and detailing of reinforced concrete structural members according to the ACI Building Code Requirements subject to axial loads, bending, torsion and shear. Applications include continuous beams and frames. Hands-on design experience and skills will be gained and learned through problem sets and a comprehensive design project. An understanding of real-world open-ended design issues will be developed.

Prerequisite: CEEN 3321 and 4304.

CEEN 4330  Introduction to Bridge and Pavement Engineering  
3 Semester Credit Hours (3 Lecture Hours)  

(3:0) This course focuses on the materials, technology and procedures used to design and manage road pavements, with reference to the National Roads Authority (NRA) Design Manual for roads and bridges, and guidelines issued by the Department of Transport, Tourism and Sport (DTTS). 

Prerequisite: CEEN 4304.

CEEN 4332  Traffic Engineering  
3 Semester Credit Hours (3 Lecture Hours)  

(3:0) The purpose of this course is to introduce fundamentals of traffic engineering including data collection, analysis, and design. Emphasis is on the safe and efficient operations of roadway intersections. Traffic engineering studies traffic control devices, capacity and level of service analysis of freeways and urban roads. Applications of traffic operations include computer simulation models to the design of isolated intersection and coordinated traffic signal control systems.

Prerequisite: CEEN 4306.

CEEN 4342  Construction Management  
3 Semester Credit Hours (3 Lecture Hours)  

The course focuses on management techniques to solve the unique problems associated with a construction project. Study of Construction Management functions including Project Management, Cost Management, Time Management, Quality Management, Contract Administration, and Safety Management will be covered. Emphasis is put on the application of each function throughout the project phases. 

Prerequisite: CEEN 4304.

CEEN 4396  Directed Independent Study  
1-3 Semester Credit Hours  

(1-3) Requires a formal proposal of study to be completed in advance of registration, approval of supervising faculty and department chairperson.

Engineering Courses

ENGR 1201  Introduction to Engineering  
2 Semester Credit Hours (1 Lecture Hour, 2 Lab Hours)  

Introduction to the engineering profession, ethics, and disciplines; development of skills in teamwork, problem solving and design; other topics include computer applications and programming; Newton's laws, unit conversions, statistics. Offering: Fall and Spring.

Prerequisite: MATH 1314.

ENGR 1312  Engineering Graphics I  
3 Semester Credit Hours (2 Lecture Hours, 2 Lab Hours)  

Topics include, depending on the major: emphasis on computer applications and programming and solids modeling using CAD tools or other software; fundamentals of engineering science; advanced graphic skills. Pre-req: MATH 1314 - College Algebra or equivalent academic preparation. Offered Fall and Spring.

Prerequisite: MATH 1314.

TCCNS: ENGR 1304  
ENGR 2105  Electrical Circuits Laboratory  
1 Semester Credit Hour (3 Lab Hours)  

Laboratory experiments supporting theoretical principles presented in ENGR 2305 involving DC and AC circuit theory, network theorems, time, and frequency domain circuit analysis. Introduction to principles and operation of basic laboratory equipment; laboratory report preparation.

Prerequisite: ENGR 2305*.
* May be taken concurrently.

Co-requisite: ENGR 2305, SMTE 0099.  
ENGR 2106  Digital Systems Laboratory  
1 Semester Credit Hour (3 Lab Hours)  

Basic laboratory experiments supporting theoretical principles presented in ENGR 2306 involving design, construction, and analysis of combinational and sequential digital circuits and systems, including logic gates, adders, multiplexers, encoders, decoders, arithmetic logic units, latches, flip-flops, registers, and counters; preparation of laboratory reports.

Co-requisite: ENGR 2306, SMTE 0099.  
ENGR 2305  Electrical Circuits  
3 Semester Credit Hours (3 Lecture Hours)  

Principles of electrical circuits and systems. Basic circuit elements (resistance, inductance, mutual inductance, capacitance, independent and dependent controlled voltage, and current sources). Topology of electrical networks; Kirchhoff 's laws; node and mesh analysis; DC circuit analysis; operational amplifiers; transient and sinusoidal steady-state analysis; AC circuit analysis; first- and second-order circuits; Bode plots; and use of computer simulation software to solve circuit problems.

Prerequisite: PHYS 2426 and MATH 2414.

Co-requisite: ENGR 2105.  
ENGR 2306  Digital Systems  
3 Semester Credit Hours (3 Lecture Hours)  

Introduction to theory and design of digital logic, circuits, and systems. Number systems, operations and codes; logic gates; Boolean Algebra and logic simplification; Karnaugh maps; combinational logic; functions of combinational Logic; flip-flops and related devices; counters; shift registers; sequential logic; memory and storage. 

Prerequisite: MATH 2305*.
* May be taken concurrently.

Co-requisite: ENGR 2106.  
ENGR 2325  Statics  
3 Semester Credit Hours (3 Lecture Hours)  

Theory of engineering mechanics involving forces, moments, and couples on stationary structures; equilibrium in two and three dimensions; free body diagrams; truss analysis; friction; centroids; centers of gravity and moments of inertia.

Prerequisite: PHYS 2425 and MATH 2414*.
* May be taken concurrently.

TCCNS: ENGR 2301  
ENGR 2326  Dynamics  
3 Semester Credit Hours (3 Lecture Hours)  

Theory of engineering mechanics involving the motion of particles, rigid bodies and systems of particles; Newton's Laws; work and energy relationships; principles of impulse and momentum; application of kinetics and kinematics to the solution of engineering problems. 

Prerequisite: ENGR 2325.

TCCNS: ENGR 2302  
ENGR 2460  Circuit Analysis  
4 Semester Credit Hours (3 Lecture Hours, 3 Lab Hours)  

This course covers principles of electronics: charge, voltage, resistance, current, and power; Ohm's Law; Kirchhoff's voltage and current laws; RC and LC circuits; periodic functions, average and RMS measurements; transformers, electrical measurement instruments. The laboratory provides hands-on experience with devices and circuits discussed in the classroom.

Prerequisite: (PHYS 2426, MATH 2414 and 3315*).
* May be taken concurrently.

Co-requisite: SMTE 0099.  
TCCNS: ENGR 2305  
ENGR 3315  Fluid Mechanics  
3 Semester Credit Hours (3 Lecture Hours)  

Fluid properties, fluid statics, dynamics, and kinematics, conservation of energy and momentum incompressible, laminar and turbulent flow. Similitude and dimensional analysis, and viscous flow. Offered: Fall Spring.

Prerequisite: MATH 3315*, ENGR 2326 and MATH 2415.
* May be taken concurrently.

ENGR 3316  Thermodynamics  
3 Semester Credit Hours (3 Lecture Hours)  

Theory and application of energy methods in engineering; conservation of mass and energy; energy transfer by heat, work and mass; thermodynamic properties; analysis of open and closed systems; the second law of thermodynamics and entropy; gas, vapor and refrigeration cycles.

Prerequisite: (PHYS 2425 and MATH 2414).

ENGR 3320  Strength of Materials  
3 Semester Credit Hours (3 Lecture Hours)  

Concepts in strength of materials, stress, strain; deformation under load, direct, shear, and combined stresses; stress concentrations, bending stresses and torsional shear stresses, deflection in beams and shafts; columns, and pressure vessels.

Prerequisite: ENGR 2325 and 3322 or ENGR 2322.

ENGR 3322  Materials Science  
3 Semester Credit Hours (3 Lecture Hours)  

Structure and properties of metallic and nonmetallic materials; microstructure, mechanical testing, phase diagrams, heat treatment, testing, ceramics, polymers, composites, construction materials, failure analysis, nondestructive evaluation, corrosion and thermal properties of materials.

Prerequisite: (CHEM 1411 and PHYS 2425).

ENGR 3350  Manufacturing Processes  
3 Semester Credit Hours (2 Lecture Hours, 3 Lab Hours)  

Introduction to metal and non-metallic manufacturing processes; casting, forging, rolling, extrusion, sheet metal forming, cutting tools turning and milling operations, abrasive machining, welding and joining, powder compaction, molding, forming of plastics, surface treatment, human factors and safety.

Prerequisite: ENGR 1312 and 3322.

Co-requisite: SMTE 0099.  
ENGR 4240  Project Management  
2 Semester Credit Hours (2 Lecture Hours, 2 Lab Hours)  

Foundations of engineering economy, cash flow and equivalence, and project justification. Introduction to project management, planning, scheduling, and control, use of project management software, GANTT charts, PERT charts, and critical path. Students prepare proposals, including specifications, timelines, schedule, and budget, for projects to be implemented in ENGR 4370 - Capstone Projects. This course should be taken the semester preceding ENGR 4370 - Capstone Projects. 

Prerequisite: (MEEN 3330 and 3345) or (EEEN 3330, 3310 and 3350) or (IEEN 3302 and 3320) or (CEEN 3320 and 4304).

Co-requisite: SMTE 0099.  
ENGR 4350  Machine Vision and Image Processing Applications  
3 Semester Credit Hours (3 Lecture Hours)  

Introduces students to automated vision systems and components, camera models, testing and measurement, and fundamentals of image processing. Topics include image analysis and processing in binary, gray scale and color images in spatial- and frequency-domain. Texture and shape analysis, hyperspectral imaging, other transforms, and filters are discussed and applied.

Prerequisite: (COSC 1330 or 1435) and ENGR 2460 and MATH 2414.

ENGR 4370  Capstone Projects  
3 Semester Credit Hours (1 Lecture Hour, 5 Lab Hours)  

This course allows students to employ the knowledge attained in other courses to implement (including building, testing, and documenting) an approved project, within budget and on schedule. Course requirements include a written report and oral presentations.

Prerequisite: ENGR 4240.

Co-requisite: SMTE 0099.  
ENGR 4390  Special Topics in Engineering  
1-3 Semester Credit Hours (1 Lecture Hour)  

Subject material variable. May be repeated for credit when topics are different.

ENGR 4420  Engineering Lab Measurements  
4 Semester Credit Hours (2 Lecture Hours, 4 Lab Hours)  

Principles of physical measurements; standards, calibration, error estimation; static and dynamic performance of measuring systems; laboratory experience, experiment planning, report writing. The purpose of this course is for students to gain proficiency in designing, assembling, and operating an experiment; and analyzing and presenting experimental results. This encompasses skills such as an understanding control and data acquisition electronics, operation and limitation of modern sensors, calibration and error analysis, assessing applicability of theory and the impact of secondary experimental variables, and writing and presenting reports and analysis.

Prerequisite: PHYS 2426 and (MATH 3342 or 3345).

Co-requisite: SMTE 0099.