Mathematics, BS - Grades 7-12 Mathematics Education Concentration
Program Description
Introduction
The College of Science is committed to the support of students seeking to become science, mathematics and technology educators at all levels. The Science, Mathematics and Technology Education (SMTE) program offers content courses for students seeking K-12 science, mathematics and technology education. SMTE classes are also an integral part of the course work for degrees preparing students for Teacher Certifications. The SMTE program does not offer a degree; rather, degrees leading to Teacher Certification are offered by other Science programs and by the College of Education and Human Development. Students seeking to teach in the elementary and secondary schools of Texas must meet degree requirements as well as certification requirements. The requirements and procedure to become a science, mathematics or technology teacher in Texas are outlined below. Undergraduate students who are graduating from the College of Science or the College of Liberal Arts who are seeking initial teacher certification at the 4-8, 7-12 and EC-12 levels prior to graduation, automatically qualify for the Minor in Education.
How to Become a Science, Mathematics or Technology Teacher in Texas
In order to be recommended for teacher certification at this university, a candidate must fulfill three basic requirements:
- have a bachelor’s degree from an accredited college or university that includes an academic major and teacher training courses,
- complete teacher training through an approved program, and
- successfully complete the appropriate teacher certification tests for the subject and grade level that the candidate wishes to teach.
Additional information on the requirements to become a teacher in Texas can be obtained at the State Board of Educator Certification (SBEC) website: http://www.sbec.state.tx.us/SBECOnline/certinfo/becometeacher.asp. This website also provides information on the resources available to help students pay for a teacher training program.
SBEC has approved three levels of teacher certification for regular educators:
- Early childhood to grade 6 which includes foundation subjects and enrichment areas such as art, PE, and music,
- Grade 4-8 which includes the foundation areas only, and
- Grade 7-12 certification.
Students can find information on the different certifications at the official Texas Examinations of Educator Standards (TExES) Web site: http://www.texes.ets.org. Texas A&M University-Corpus Christi offers several degrees leading to a number of these teacher certifications. The College of Education and Human Development offers several degrees leading to teacher certification. The College of Science offers bachelor’s degrees leading to teacher certification in the sciences, mathematics and technology at the 4-8 and the 7-12 levels:
- Biology, BS - Grades 7-12 Life Science Education Concentration (120-122 sem. hrs.)
- Chemistry, BS - Grades 7-12 Physical Science Education Concentration (126-128 sem. hrs.)
- Environmental Science, BS - Grades 4-8 Science Education Concentration (125-130 sem. hrs.)
- Elementary Education, BS - Grades 4-8 with Mathematics Certification (College of Education and Human Development)
- Mathematics, BS — Grades 7-12 Mathematics Education Concentration (120 sem. hrs.) Details immediately follow below.
Mathematics 7-12 teacher certification is also possible with an undergraduate major other than mathematics. Details can be found in the Mathematics, Grades 7-12 Teacher Certification Without a Mathematics Major section.
The individual programs, Biology, Chemistry, Environmental Science, and Mathematics offer these degrees and courses.
Students seeking Teacher Certification are also strongly urged to contact the Certification Officer in the College of Education and Human Development about current requirements and procedures that must be met to obtain the certificate. In particular, students following a degree plan leading to teacher certification must be admitted to the Teacher Education Program at Texas A&M University-Corpus Christi prior to enrolling in any 4000 level EDCI or EDUC courses. Application forms for admission to the teacher education program may be obtained from the Undergraduate or Certification Office, room FC 201. The students are referred to the College of Education and Human Development section of this catalog for more information on the Teacher Education Program.
Grade Point Average for Admission to Teacher Education
A minimum grade point average of 2.75 (4.0 = A) in all work attempted, a minimum grade point average of 2.75 in all science, math, or specialization areas, and no grade below “C” in any science or mathematics course on a student’s degree plan and/or education courses within the teacher education core block of courses are required. (See College of Education and Human Development, “Admission to Teacher Education” and “Admission to Student Teaching” for other requirements.)
Alteration of a Certification Plan
Any amendment to a degree plan originally filed must be approved by the student’s academic advisor, the Department Chair, the Dean of the College of Science, and the Certification Officer of the College of Education and Human Development for the degree to be granted.
General Requirements
This plan is designed for those students who desire a Bachelor of Science Degree in Mathematics and a secondary teaching certificate in mathematics. The requirements for a Bachelor of Science in Mathematics degree are a minimum of 120 semester hours. Forty-two are designated University core curriculum courses; 38 are mathematics courses. All students must take the Major Field Test in Mathematics their senior year, prior to graduation.
Requirements | Credit Hours |
---|---|
Core Curriculum Program | 42 |
First-Year Seminars (when applicable)^{1} | 0-2 |
Mathematics Core | 17 |
Mathematics Electives | 15 |
Teacher Education Core Requirements | 27 |
Electives (as needed to fulfill University graduation requirements)^{2} | 20 |
Total Credit Hours | 121-123 |
- ^{ 1 }
Full-time, first time in college students are required to take the first-year seminars.
- ^{ 2 }
Electives (as needed to fulfill University graduation requirements): 2-20 hours.
Program Requirements
Code | Title | Hours |
---|---|---|
Full-time, First-year Students | ||
UNIV 1101 | University Seminar I | 1 |
UNIV 1102 | University Seminar II | 1 |
Core Curriculum Program | ||
University Core Curriculum | 42 | |
Students must take the following: ^{1} | ||
Mathematics | ||
Calculus I | ||
Life and Physical Sciences | ||
University Physics I | ||
University Physics II | ||
Social and Behavioral Sciences | ||
Child Growth and Development | ||
Mathematics Core | ||
MATH 2413 | Calculus I (1 hour laboratory component) ^{2,3} | 1 |
Calculus II ^{2} | ||
MATH 3311 | Linear Algebra | 3 |
MATH 3313 | Foundations of Number Theory | 3 |
MATH 2415 | Calculus III | 4 |
COSC 1330 | Programming for Scientists, Engineers, and Mathematicians ^{4} | 3 |
MATH 3315 | Differential Equations | 3 |
Mathematics Electives | ||
MATH 3312 | College Geometry | 3 |
MATH 3314 | Foundations of Real Numbers | 3 |
MATH 3342 | Applied Probability and Statistics | 3 |
MATH 4306 | Modern Algebra | 3 |
SMTE 4370 | Mathematics Education Topics I | 3 |
Teacher Education Core Requirements | ||
EDUC 2211 | Foundations of Education | 2 |
SPED 3310 | Individual Differences in Schools and Communities | 3 |
READ 3353 | Content Area Reading for Secondary Students | 3 |
or READ 3352 | Content Area Reading for Elementary Students | |
EDUC 3211 | Culturally and Linguistically Responsive Teaching | 2 |
BIEM 4357 | Methods of Teaching English as a Second Language | 3 |
EDUC 4305 | Seminar I | 3 |
IDET 3210 | Design and Development of Technology-Integrated Learning Environments | 2 |
EDUC 4694 | Clinical Teaching | 6 |
EDUC 4395 | Seminar II | 3 |
Elective | ||
Electives (as needed to fulfill University graduation requirements 2-20 hrs) | 2-20 | |
Total Hours | 123 |
- ^{ 1 }
Only 3 hours of these courses will apply to the University Core Curriculum. The three 1 hour laboratory components apply to the Mathematics Core or Supporting Courses requirement.
- ^{ 2 }
May be waived with suitable placement; see placement section below for more details. Upper-division classes may be required to increase total hours to the university minimum. See the degree requirements section of the catalog for details.
- ^{ 3 }
3 hours of MATH 2413 Calculus I (4 sch) apply to the University Core Curriculum. The 1 hour laboratory component applies to the Mathematics major requirement.
- ^{ 4 }
May substitute COSC 1435 Introduction to Problem Solving with Computers I (4 sch) or COSC 1436 Introduction to Problem Solving with Computers II (4 sch).
Teacher Education Core Requirements
Students who seek a 7-12 level Mathematics teaching certificate should contact a Certification Officer in the College of Education and Human Development about requirements and procedures that must be met to obtain the certificate. The teacher education core sequence must be taken in a specific order and it is recommended that students contact the College of Education and Human Development early in their academic careers for specific details on these courses.
Course Sequencing
First Year | ||
---|---|---|
Fall | Hours | |
UNIV 1101 | University Seminar I | 1 |
MATH 2413 | Calculus I | 4 |
POLS 2305 | U.S. Government and Politics | 3 |
ENGL 1301 | Writing and Rhetoric I | 3 |
EDUC 1354 | Child Growth and Development | 3 |
Creative Arts Core Requirement | 3 | |
Hours | 17 | |
Spring | ||
UNIV 1102 | University Seminar II | 1 |
MATH 2414 | Calculus II | 4 |
ENGL 1302 or COMM 1311 | Writing and Rhetoric II or Foundation of Communication | 3 |
POLS 2306 | State and Local Government | 3 |
American History Core Requirement | 3 | |
Language, Philosophy & Culture Core Requirement | 3 | |
Hours | 17 | |
Second Year | ||
Fall | ||
COSC 1330 | Programming for Scientists, Engineers, and Mathematicians | 3 |
MATH 2415 | Calculus III | 4 |
PHYS 2425 | University Physics I | 4 |
MATH 3313 | Foundations of Number Theory | 3 |
EDUC 2211 | Foundations of Education | 2 |
Hours | 16 | |
Spring | ||
PHYS 2426 | University Physics II | 4 |
MATH 3315 | Differential Equations | 3 |
MATH 3314 | Foundations of Real Numbers | 3 |
American History Core Requirement | 3 | |
SPED 3310 | Individual Differences in Schools and Communities | 3 |
Hours | 16 | |
Third Year | ||
Fall | ||
MATH 3311 | Linear Algebra | 3 |
MATH 3312 | College Geometry | 3 |
Math Upper Elective | 3 | |
READ 3353 or READ 3352 | Content Area Reading for Secondary Students or Content Area Reading for Elementary Students | 3 |
EDUC 3211 | Culturally and Linguistically Responsive Teaching | 2 |
Elective (to meet 120 hrs) | 3 | |
Hours | 17 | |
Spring | ||
MATH 3342 | Applied Probability and Statistics | 3 |
MATH 4306 | Modern Algebra | 3 |
SMTE 4370 | Mathematics Education Topics I | 3 |
Math Upper Elective | 3 | |
BIEM 4357 | Methods of Teaching English as a Second Language | 3 |
Hours | 15 | |
Fourth Year | ||
Fall | ||
EDUC 4305 | Seminar I | 3 |
IDET 3210 | Design and Development of Technology-Integrated Learning Environments | 2 |
Elective (to meet 120 hrs) | 3 | |
Elective (to meet 120 hrs) | 3 | |
Elective (to meet 120 hrs) | 3 | |
Hours | 14 | |
Spring | ||
EDUC 4694 | Clinical Teaching | 6 |
EDUC 4395 | Seminar II | 3 |
Hours | 9 | |
Total Hours | 121 |
Courses
Preparation workshop to help students achieve College Readiness in mathematics under the Texas Success Initiative. Topics include five general areas: fundamental mathematics, algebra, geometry, statistics, and problem solving.
This course is co-requisite course supporting for MATH 1314. Support will focus on essential skills required for success in College Algebra (Math 1314). Supporting topics include review of intermediate algebra, polynomial equations, graphing techniques, and applications. Course provides the necessary academic support for TSI liable students concurrently enrolled in MATH 1314 as the co-requisite with MATH 0214. Students who register for MATH 0214 must co-register in MATH 1314. Math 0214 is not counted toward graduation. Fall, Spring, Summer.
This course is the co-requisite course supporting for MATH 1324. Support will focus on essential skills required for success in Business Math (Math 1324). Supporting topics include the use of calculators and technology. Topics focus on basic review of mathematical skills, elementary algebra, mathematical and logical reasoning, probability, and financial management, while providing the necessary academic support for TSI liable students concurrently enrolled in MATH 1324 as the co-requisite with MATH 0224. Students who register for MATH 0224 must co-register in MATH 1324. Math 0224 is not counted toward graduation. Fall, Spring, Summer.
This course is co-requisite course supporting for MATH 1332. Support will focus on essential skills required for success in Contemporary Mathematics (Math 1332). Supporting topics include a basic review of mathematical skills, elementary algebra, mathematical and logical reasoning, probability, and descriptive statistics, while providing the necessary academic support for TSI liable students concurrently enrolled in MATH 1332 as the co-requisite with MATH 0232. Students who register for MATH 0232 must co-register in MATH 1332. Math 0232 is not counted toward graduation. Fall, Spring, Summer.
This course is co-requisite course supporting for MATH 1442. Support will focus on essential skills required for success in Statistics for Life (Math 1442). Supporting topics include the use of calculators and technology. Topics focus on descriptive and inferential statistics, probabilities including notation, while providing the necessary academic support for TSI liable students concurrently enrolled in MATH 1442 as the co-requisite with MATH 0242 . Students who register for MATH 0242 must co-register in MATH 1442. Math 0242 is not counted toward graduation. Fall, Spring, Summer.
Topics include number concepts, computation, elementary algebra, geometry, and mathematical reasoning. Also, linear equations and inequalities, rational expressions, exponents and radicals, quadratics and word problems. May be repeated for credit as needed to complete mastery of all topics. (Not counted toward graduation.) Fall, Spring, Summer.
3 sem. hrs. (2:2) Topics include number concepts, computation, elementary algebra, and geometry. Also, linear equations and inequalities, rational expressions, exponents and radicals, quadratics and word problems. May be repeated for credit as needed to complete mastery of all topics. (Not counted toward graduation.) Fall, Spring, Summer.
Number concepts, computation, elementary algebra, geometry, and mathematical reasoning.
Topics include linear equations and inequalities, rational expressions, exponents and radicals, quadratics and word problems.
Prerequisite: MATH 0398.
Supports MATH 1324 with focus on essential skills required for success in Business Math, and providing the necessary academic support for TSI liable students concurrently enrolled in MATH 1324. Students who register for MATH 1024 must co-register in MATH 1324. Math 1024 is not counted toward graduation. Fall, Spring, Summer.
Supports MATH 1325 with focus on essential skills required for success in Business Calculus (Math 1325). Students who register for MATH 1025 must co-register in MATH 1325. Math 1025 is not counted toward graduation. Fall, Spring, Summer.
Quadratic equations, inequalities, graphs, logarithms and exponentials, theory of polynomial equations, systems of equations by using matrix. Counts as the mathematics component of the University Core Curriculum. Fall, Spring, Summer. Students in STEM programs must register in sections with S designation. Meets 3 hours per week with one meeting per week in MATH 1014.
Trigonometric functions, identities, equations involving trigonometric functions, solutions of right and oblique triangles.
Prerequisite: (MATH 1314, 1314, minimum score of 550 in 'SAT MATH SECTION' or minimum score of 21 in 'ACT1 Math') or minimum score of 21 in 'ACT Math'.
Students will learn how the properties and language of mathematics can be used in business and real-world problem solving and understand the techniques and applications of finance problems, basic matrix operation, basic counting principles, probability analysis in modeling real-world scenarios, and review of Algebra topics. Three lecture hours plus one discussion session a week in corequisite (MATH 1024) This course could be taught in 14-weeks or 7-weeks semesters, and in F2F or fully online formats. May not be counted toward a degree in the Colleges of Science or Engineering. Fall, Spring Summer.
Students will develop and combine the concepts in and relationships between Mathematics and Business from the fundamentals of calculus and optimization in all Business fields. Students are expected to learn the materials algebraically with technology. Students will combine the concepts of limits, continuity, differentiation and integration techniques to solve problems in business, economics, and social sciences. Three lecture hours plus one discussion session a week in MATH 1025. This course could be taught in 14-weeks and 7-weeks semesters in F2F and fully online formats. May not be counted toward a degree in the Colleges of Science or Engineering. Fall, Spring, Summer.
Prerequisite: MATH 1324, minimum score of 550 in 'SAT MATH SECTION', minimum score of 21 in 'ACT1 Math' or minimum score of 21 in 'ACT Math'.
This course serves as a terminal course and supplies a brief overview of several topics in mathematics. Topics may include introductory treatments of sets, logic, number systems, number theory, relations, functions, probability and statistics. Appropriate applications are included. This course emphasizes using critical thinking to make decisions based on information.
A course to introduce students to mathematical topics in a formal setting. The course may support problem solving, or systematic investigations of topics outside the current mathematical catalog. May not be substituted for regularly scheduled offerings.
An introduction to statistical concepts and methods used in all disciplines to enhance decision making based on data analysis, including: basic experimental design models, measurement and data collection through sampling; display and summary of information, and assessment of relationship through descriptive techniques; probability concepts leading to estimation and hypothesis testing of means, variance and proportions, regression analysis, one-factor ANOVA and chi-square test of independence; and applications through case studies. The laboratory component of the course offers applications of the theory presented during the classroom sessions.
An introduction to topics in Discrete Mathematics with an emphasis on applications in Mathematics and Computer Science. Topics include formal logic, graphs, trees and related algorithms, and combinatorics and discrete probability.
Prerequisite: MATH 2413^{*}, 2413^{*}, minimum score of 620 in 'SAT Math', minimum score of 620 in 'SAT1 Mathematics', minimum score of 640 in 'SAT MATH SECTION', minimum score of 27 in 'ACT Math' or minimum score of 27 in 'ACT1 Math'.
^{*} May be taken concurrently.
A more rapid treatment of the material in MATH 1314 and MATH 1316, this course is designed for students who wish a review of the above material, or who are very well prepared. Functions, graphs, trigonometry, and analytic geometry.
Prerequisite: MATH 1314, 1314, minimum score of 550 in 'SAT MATH SECTION', minimum score of 21 in 'ACT Math' or minimum score of 21 in 'ACT1 Math'.
Limits, continuity, derivatives, applications of the derivative, and an introduction to integrals. Contains a laboratory component.
Prerequisite: MATH 1316, 1316, 2312, 2312, minimum score of 640 in 'SAT MATH SECTION' or minimum score of 27 in 'ACT1 Math'.
Techniques of integration, applications of integrals, sequences, series, Taylor polynomials and series. Parametric equations. Contains a laboratory component.
Vectors and space curves, partial derivatives, multiple integrals, special coordinate systems, line and surface integrals, Green's, Stokes', and the Divergence Theorems. Contains a laboratory component. Vectors and space curves, partial derivatives, multiple integrals, special coordinate systems, line and surface integrals, Green's, Stokes', and the Divergence Theorems. Contains a laboratory component.
Characteristics of geographic/spatial information; overview of relevant sections of numbers, algebra and geometry, plane and spherical trigonometry, matrices, determinants and vectors, curves and surfaces, integral and differential calculus, partial derivatives, with an emphasis on geospatial applications. Concepts of geospatial coordinate systems and geospatial coordinate transformations; overview of spatial statistics and best-fit solutions with geospatial applications. Students may not receive credit for both MATH 3300 and GISC 3300.
This course introduces functions of a complex variable and their applications. Contents include differentiation and integration; zeros, poles and residues; conformal mappings.
Applications of fundamentals of linear algebra, vector analysis, numerical methods, computer programming and probability and statistics into mechanical engineering. May not count towards the MATH major. Students may not receive credit for both MATH 3310 and MEEN 3310.
Prerequisite: MATH 3315.
Fundamentals of linear algebra and matrix theory. Topics include vectors, matrix operations, linear transformations, fundamental properties of vector spaces, systems of linear equations, eigenvalues and eigenvectors. Applications.
A careful study of the foundations of Euclidean geometry by synthetic methods with an introduction to non-Euclidean geometries. An introduction to transformational geometry.
This course assists a student's transition to advanced mathematics. Fundamentals of logic and proof are reviewed and applied to topics from elementary number theory.
This course assists a student's transition to advanced mathematics. Fundamentals of logic and proof are reviewed and applied to development of the real number line.
Prerequisite: MATH 2414.
An introduction to both theoretical and applied aspects of ordinary differential equations. Topics include: first order equations, linear second order equations, elementary numerical methods, and the Laplace transform.
A calculus based introduction to probability and statistics. Emphasis will be on development of statistical thinking and working with data. Topics include probability theory, descriptive statistics, common distributions, and statistical inference.
An introduction to probability/statistical modeling and data analysis techniques to investigate data. Topics include: exploratory data analysis, probability models and simulation, sampling distributions, statistical inference. Applications to real world problems. Students will be expected to present and justify results orally and in writing. Note: MATH 3342 and MATH 3345 cannot both be counted for credit.
This is an introduction to probability. In the course, key fundamental concepts of probability, random variables and their distributions, expectations, and conditional probabilities will be covered. Topics include counting rules, combinatorial analysis, sample spaces, axioms of probability, conditional probability and independence, discrete and continuous random variables, jointly distributed random variables, characteristics of random variables, law of large numbers and central limit theorem, random processes, Markov chains, Markov chain-Monte Carlo, Poisson Process and Entropy.
Prerequisite: MATH 2415.
Combining data, computation, and inferential thinking, data science is redefining how people and organizations solve challenging problems and understand their world. This class bridges computer science, statistics, and mathematics courses as well as methods courses in other fields. In this class, we explore key areas of data science including question formulation, data collection and cleaning, visualization, predictive modeling, and decision making. Through a strong emphasis on data centric computing, quantitative critical thinking, and exploratory data analysis, this class covers key principles and techniques of data science. These include languages for transforming, querying and analyzing data; algorithms for machine learning methods including regression, classification and clustering, principles behind creating informative data visualizations, and techniques for scalable data processing.
This course introduces the linear programming and optimization problems arising in many applications. Contents include linear programming models with solutions, the simplex method, duality theory and its use for management decision making, dual simplex method and sensitivity analysis.
A problem solving course for students who want to participate in math problem solving competitions, train for the actuarial or other professional examinations, work on research aimed at conference presentations, or perform research projects at the junior level that are not at the level of directed independent study material.
Prerequisite: MATH 2414.
This course introduces a weekly mathematics seminar. Students will generate a viable project for the capstone course.
Development of projects as proposed in MATH 4185, as well as mathematics communication skills. Students will present their projects, and take a national level assessment.
Prerequisite: MATH 4185.
An advanced treatment of the foundations of calculus stressing rigorous proofs of theorems. Topics include: elements of propositional and predicate logic, topology of the real numbers, sequences, limits, the derivative, and the Riemann integral.
Fundamentals of set operations, maps and relations, groups, rings and field theory. Topics include permutation groups, cosets, homomorphisms and isomorphisms, direct product of groups and rings, integral domains field of quotients, fundamental properties of integers, the ring of integers modulo n, and rings of polynomials. Applications.
Differential forms on R1, R2, R3, and Rn; Integration and differentiation of differential forms; Stokes' Theorem; manifolds; Gaussian curvature and the Gauss-Bonnet Theorem.
Prerequisite: MATH 2415.
An introduction to partial differential equations emphasizing the wave, diffusion and potential (Laplace) equations. A focus on understanding the physical meaning and mathematical properties of solutions of partial differential equations. Methods include fundamental solutions and transform methods for problems on the line, and separation of variables using orthogonal series for problems in regions with boundary. Additional topics include higher dimensional problems and special topics like Harmonic functions, the maximum principle, Green's functions etc.
Introduction to the formulation of linear models and the estimation of the parameters of such models, with primary emphasis on least squares. Application of multiple regression and curve fitting and the design of experiments for fitting regression models.
Prerequisite: MATH 1342, 2342 or 1470.
A continued study of topics from Discrete Mathematics I with additional topics from discrete mathematics that have strong application to the field of computer science. Additional topics include: recurrence relations, formal languages, and finite-state machines.
This is a first course in mathematical statistics, topics include: moment-generating functions, functions of random variables, sampling distributions, methods of estimation including Bayesian estimation, characteristics of estimators, interval estimation, hypothesis testing, Neyman-Pearson Lemma, likelihood ratio test, tests involving means and variances, regression and correlation, multiple linear regression, introduction to ANOVA, non-parametric tests.
Prerequisite: MATH 2415.
Capstone course for mathematics majors. The construction of mathematical models from areas such as economics, refining, biology and mariculture, etc. Where possible, local phenomena will be modeled with the assistance of outside consultants.
Offered on sufficient demand.
See college description.