Environmental Science, BS - Grades 4-8 Science Education Concentration

Program Description

Introduction

The College of Science is committed to the support of students seeking to become science, mathematics and technology educators at all levels. The Science, Mathematics and Technology Education (SMTE) program offers content courses for students seeking K-12 science, mathematics and technology education. SMTE classes are also an integral part of the course work for degrees preparing students for Teacher Certifications. The SMTE program does not offer a degree; rather, degrees leading to Teacher Certification are offered by other Science and Technology programs and by the College of Education and Human Development. Students seeking to teach in the elementary and secondary schools of Texas must meet degree requirements as well as certification requirements. The requirements and procedure to become a science, mathematics or technology teacher in Texas are outlined below. Undergraduate students who are graduating from the College of Science or the College of Liberal Arts who are seeking initial teacher certification at the 4-8, 7-12 and EC-12 levels prior to graduation, automatically qualify for the Minor in Education.

How to Become a Science, Mathematics or Technology Teacher in Texas

In order to be recommended for teacher certification at this university, a candidate must fulfill three basic requirements:

1. have a bachelor's degree from an accredited college or university that includes an academic major and teacher training courses,
2. complete teacher training through an approved program, and
3. successfully complete the appropriate teacher certification tests for the subject and grade level that the candidate wishes to teach.

Additional information on the requirements to become a teacher in Texas can be obtained at the State Board of Educator Certification (SBEC) website: http://www.sbec.state.tx.us/SBECOnline/certinfo/becometeacher.asp. This website also provides information on the resources available to help students pay for a teacher training program.

SBEC has approved three levels of teacher certification for regular educators:

1. Early childhood to grade 6 which includes foundation subjects and enrichment areas such as art, PE, and music,
2. Grade 4-8 which includes the foundation areas only, and
3. Grade 7-12 certification.

Students can find information on the different certifications at the official Texas Examinations of Educator Standards (TExES) Web site: http://www.texasexes.ets.org. Texas A&M University-Corpus Christi offers several degrees leading to a number of these teacher certifications. The College of Education and Human Development offers several degrees leading to teacher certification. The College of Science offers bachelor's degrees leading to teacher certification in the sciences, mathematics and technology at the 4-8 and the 7-12 levels. These bachelor's degrees are the following:

- Biology, BS - Grades 7-12 Life Science Education Concentration (http://catalog.tamucc.edu/undergraduate/science/teaching-certificates/biology-bs-grades-7-12-life-science-education-concentration/) (120-122 sem. hrs.)
- Chemistry, BS - Grades 7-12 Physical Science Education Concentration (http://catalog.tamucc.edu/undergraduate/science/teaching-certificates/chemistry-bs-grades-7-12-physical-science-education-concentration/) (126-128 sem. hrs.)
- Environmental Science, BS - Grades 4-8 Science Education Concentration (125-130 sem. hrs.) Details immediately follow below.
- Elementary Education, BS - Grades 4-8 with Mathematics Certification (http://catalog.tamucc.edu/undergraduate/science/teaching-certificates/elementary-education-bs-grades-4-8-mathematics-certification/) (College of Education and Human Development)
- Mathematics, BS - Grades 7-12 Mathematics Education Concentration (http://catalog.tamucc.edu/undergraduate/science/teaching-certificates/mathematics-bs-grades-7-12-education-concentration/) (120 sem. hrs.)

Mathematics 7-12 teacher certification is also possible with an undergraduate major other than mathematics. Details can be found in the Mathematics, Grades 7-12 Teacher Certification Without a Mathematics Major (http://catalog.tamucc.edu/undergraduate/science/teaching-certificates/mathematics-grades-7-12-teacher-certification-without-major/) section.

The individual programs, Biology, Chemistry, Environmental Science, and Mathematics offer these degrees and courses.

Students seeking Teacher Certification are also strongly urged to contact the Certification Officer in the College of Education and Human Development about current requirements and procedures that must be met to obtain the certificate. In particular, students following a degree plan leading to teacher certification must be admitted to the Teacher Education Program at Texas A&M University-Corpus Christi prior to enrolling in any 4000 level EDCI or EDUC courses. Application forms for admission to the teacher education program may be obtained from the Undergraduate or Certification Office, room FC 201. The students are referred to the College of Education and Human Development section of this catalog for more information on the Teacher Education Program.

Grade Point Average for Admission to Teacher Education

A minimum grade point average of 2.75 (4.0 = A) in all work attempted, a minimum grade point average of 2.75 in all science, math, or specialization areas, and no grade below "C" in any science or mathematics course on a student's degree plan and/or education courses within the professional block of courses are required. (See College of Education and Human Development, "Admission to Teacher Education" and "Admission to Student Teaching" for other requirements.)

Alteration of a Certification Plan

Any amendment to a degree plan originally filed must be approved by the student's academic advisor, the Department Chair, the Dean of the College of Science, and the Certification Officer of the College of Education and Human Development for the degree to be granted.
General Requirements
The minimum requirement for a Bachelor of Science Degree in Environmental Science with a science education concentration is a total of 120 hours. The concentration is designed for those students who plan on obtaining a 4-8 Science certificate. The degree requirements are divided among the following areas:

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Curriculum Program</td>
<td>42</td>
</tr>
<tr>
<td>(http://catalog.tamucc.edu/</td>
<td></td>
</tr>
<tr>
<td>undergraduate/university-college/</td>
<td></td>
</tr>
<tr>
<td>programs/core-curriculum-program/)</td>
<td></td>
</tr>
<tr>
<td>First-Year Seminars (when applicable)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0-2</td>
</tr>
<tr>
<td>Science Content Courses</td>
<td>38</td>
</tr>
<tr>
<td>Mathematics Courses</td>
<td>3</td>
</tr>
<tr>
<td>Professional Development and</td>
<td>30</td>
</tr>
<tr>
<td>Reading Sequence</td>
<td></td>
</tr>
<tr>
<td>Electives as Required</td>
<td>7</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>120-122</td>
</tr>
</tbody>
</table>

1 Full-time, first time in college students are required to take the first-year seminars.
 • UNIV 1101 University Seminar I (1 sch)
 • UNIV 1102 University Seminar II (1 sch)

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNIV 1101</td>
<td>University Seminar I *</td>
<td>1</td>
</tr>
<tr>
<td>UNIV 1102</td>
<td>University Seminar II *</td>
<td>1</td>
</tr>
<tr>
<td>BIOL 1406</td>
<td>Biology I</td>
<td></td>
</tr>
<tr>
<td>CHEM 1411</td>
<td>General Chemistry I</td>
<td></td>
</tr>
<tr>
<td>ESCI 1401</td>
<td>Environmental Science I: Intro to Environmental Science</td>
<td></td>
</tr>
<tr>
<td>PSYC 2301</td>
<td>General Psychology</td>
<td></td>
</tr>
<tr>
<td>MATH 1442</td>
<td>Statistics for Life</td>
<td></td>
</tr>
<tr>
<td>BIOL 1407</td>
<td>Biology II</td>
<td></td>
</tr>
<tr>
<td>CHEM 1411</td>
<td>General Chemistry I (included in University Core)</td>
<td></td>
</tr>
<tr>
<td>ESCI 1401</td>
<td>Environmental Science I: Intro to Environmental Science (included in University Core)</td>
<td></td>
</tr>
<tr>
<td>ESCI 4202</td>
<td>Issues in Environmental Science</td>
<td>2</td>
</tr>
<tr>
<td>GEOL 1403</td>
<td>Physical Geology</td>
<td>4</td>
</tr>
<tr>
<td>GEOL 1404</td>
<td>Historical Geology</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 1401</td>
<td>General Physics I</td>
<td>4</td>
</tr>
<tr>
<td>SMTE 4217</td>
<td>Secondary Approaches to the Life Sciences</td>
<td>2</td>
</tr>
<tr>
<td>SMTE 4270</td>
<td>Science Education Topics I</td>
<td>2</td>
</tr>
</tbody>
</table>

SMTE 4320 Secondary Science Laboratory Techniques 3
ESCI 3351 Oceanography 3
or ESCI 3403 Introduction to Meteorology
SMTE 3315 Foundational Approaches to the Physical Sciences 3-4
or PHYS 1402 General Physics II

Select one of the following: 2-4
ESCI 3443 Environmental Biology
CHEM 4443 Environmental Chemistry
ESCI 3351 Oceanography
ESCI 3403 Introduction to Meteorology
ESCI 4230 Oil Spill Prevention and Response Theory
ESCI 4335 Climate and Climate Variability
ESCI 4360 Physical Oceanography
GEOL 3443 Environmental Geology

Mathematics Courses
MATH 1442 Statistics for Life (included in University Core) **

Select one of the following: 3
MATH 1316 Trigonometry
MATH 2312 Precalculus
MATH 2413 Calculus I

Professional Development Sequence

Preliminary Courses
EDUC 3311 School and Society * 3
READ 3320 Principles and Practices of Reading Instruction 3
READ 3351 Reading Assessment and Intervention 3

Field-Based Semester
EDUC 4605 Planning, Teaching, Assessment and Technology 6
EDUC 4311 Classroom Management 3

Student Teaching Semester
EDUC 4995 Clinical Teaching 9
EDUC 4321 Instructional Design for Special Populations 3

Electives as Required
Electives as needed to fulfill university graduation requirements 7

Total Hours 121-124

1 Only BIOL 1406 Biology I (4 sch) (4 hours), CHEM 1411 General Chemistry I (4 sch) (4 hours) and ESCI 1401 Environmental Science I: Intro to Environmental Science (4 sch) (3 hours) are counted in the University Core. The 1-hour laboratory component of ESCI 1401 Environmental Science I: Intro to Environmental Science (4 sch) will be counted in the major requirements rather than the University Core.

* Online offering
^ Blended offering

Professional Development Sequence
Students who seek a 4-8 level Science teaching certificate should contact a Certification Officer in the College of Education and Human Development about requirements and procedures that must be met to obtain the certificate. The professional development sequence must be taken in a specific order and it is recommended that students contact the
College of Education and Human Development early in their academic careers for specific details on these courses.

Course Sequencing

First Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESCI 1401</td>
<td>Environmental Science I: Intro to Environmental Science</td>
<td>4</td>
</tr>
<tr>
<td>GEOL 1403</td>
<td>Physical Geology</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 1301</td>
<td>Writing and Rhetoric I</td>
<td>3</td>
</tr>
<tr>
<td>UNIV 1101</td>
<td>University Seminar I</td>
<td>1</td>
</tr>
<tr>
<td>HIST 1301</td>
<td>U.S. History to 1865</td>
<td>3</td>
</tr>
<tr>
<td>Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1442</td>
<td>Statistics for Life</td>
<td>4</td>
</tr>
<tr>
<td>GEOL 1404</td>
<td>Historical Geology</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 1302</td>
<td>Writing and Rhetoric II</td>
<td>3</td>
</tr>
<tr>
<td>or COMM 1311</td>
<td>Foundation of Communication</td>
<td></td>
</tr>
<tr>
<td>UNIV 1102</td>
<td>University Seminar II</td>
<td>1</td>
</tr>
<tr>
<td>HIST 1302</td>
<td>U.S. History Since 1865</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 2301</td>
<td>General Psychology</td>
<td>3</td>
</tr>
<tr>
<td>Hours</td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

Second Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 1406</td>
<td>Biology I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 1401</td>
<td>General Physics I</td>
<td>4</td>
</tr>
<tr>
<td>POLS 2305</td>
<td>U.S. Government and Politics</td>
<td>3</td>
</tr>
<tr>
<td>SMTE 1350</td>
<td>Fundamentals of Mathematics I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2312</td>
<td>Precalculus</td>
<td>3</td>
</tr>
<tr>
<td>or MATH 1316</td>
<td>Trigonometry</td>
<td></td>
</tr>
<tr>
<td>or MATH 2413</td>
<td>Calculus II</td>
<td></td>
</tr>
<tr>
<td>Hours</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 1407</td>
<td>Biology II</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 1304</td>
<td>Introduction to Astronomy: Solar System</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1411</td>
<td>General Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>Language, Philosophy & Culture Core Requirement</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>POLS 2306</td>
<td>State and Local Government</td>
<td>3</td>
</tr>
<tr>
<td>Hours</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Third Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>READ 3320</td>
<td>Principles and Practices of Reading Instruction</td>
<td>3</td>
</tr>
<tr>
<td>ESCI 3351</td>
<td>Oceanography</td>
<td>3</td>
</tr>
<tr>
<td>SMTE 4217</td>
<td>Secondary Approaches to the Life Sciences</td>
<td>2</td>
</tr>
<tr>
<td>READ 3321</td>
<td>Principles and Practices of Reading Instruction, Grades 4 – 8</td>
<td>3</td>
</tr>
<tr>
<td>ENGL Course (Additional Teaching Requirement)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>EDUC 3311</td>
<td>School and Society</td>
<td>3</td>
</tr>
<tr>
<td>Hours</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>READ 3351</td>
<td>Reading Assessment and Intervention</td>
<td>3</td>
</tr>
<tr>
<td>ESCI 4230</td>
<td>Oil Spill Prevention and Response Theory</td>
<td>2</td>
</tr>
<tr>
<td>SMTE 3315</td>
<td>Foundational Approaches to the Physical Sciences</td>
<td>3</td>
</tr>
<tr>
<td>SMTE 4270</td>
<td>Science Education Topics I</td>
<td>2</td>
</tr>
<tr>
<td>ESCI 4202</td>
<td>Issues in Environmental Science</td>
<td>2</td>
</tr>
<tr>
<td>SMTE 4320</td>
<td>Secondary Science Laboratory Techniques</td>
<td>3</td>
</tr>
<tr>
<td>Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creative Arts Core Requirement</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>EDUC 4311</td>
<td>Classroom Management</td>
<td>3</td>
</tr>
<tr>
<td>EDUC 4605</td>
<td>Planning, Teaching, Assessment and Technology</td>
<td>6</td>
</tr>
<tr>
<td>Hours</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDUC 4321</td>
<td>Instructional Design for Special Populations</td>
<td>3</td>
</tr>
<tr>
<td>EDUC 4995</td>
<td>Clinical Teaching</td>
<td>9</td>
</tr>
<tr>
<td>Hours</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

| **Total Hours** | 123 |

Courses

ESCI 1401 Environmental Science I: Intro to Environmental Science

4 Semester Credit Hours (3 Lecture Hours, 2 Lab Hours)

Principles of the scientific method and critical thinking provide a foundation for subsequent consideration of environmental issues through a multidisciplinary approach. Laboratory exercises and local field experiences reinforce concepts introduced in the lectures. Fall, Spring.

Co-requisite: SMTE 0096.

TCCNS: ENV 1401

ESCI 1490 Selected Topics

1-4 Semester Credit Hours (1-4 Lecture Hours)

Subject materials variable. May be repeated for credit when topics are significantly different. Faculty approval required. Offered on sufficient demand.

ESCI 3202 Professional Skills

2 Semester Credit Hours (2 Lecture Hours)

Presentation and discussion of selected topics relating to the professional skills of practicing environmental scientists including literature searches, reviews, paper presentation, professional and career opportunities, professional ethics. Fall, Spring.

ESCI 3351 Oceanography

3 Semester Credit Hours (3 Lecture Hours)

Methods and principles of oceanography. A survey of oceanography with emphasis placed on the physical processes affecting water and water masses of the world oceans. Fall (on sufficient demand), Spring.

Prerequisite: CHEM 1412, ESCI 1401 or GEOL 1403.

ESCI 3403 Introduction to Meteorology

4 Semester Credit Hours (3 Lecture Hours, 2 Lab Hours)

This course is an introduction to meteorology and the dynamics of planetary atmospheres. Emphasis on atmospheric accretion, composition, evolution, structure, and dynamics. Lab exercises cover basic measurement techniques, weather maps, and forecasting. Fall, Spring (on sufficient demand).

Co-requisite: SMTE 0096.
ESCI 3443 Environmental Biology
4 Semester Credit Hours (3 Lecture Hours, 2 Lab Hours)
Historical, contemporary, and projected concerns of human activities on
biological aspects of ecosystem functioning.
Prerequisite: BIOL 1407.
Co-requisite: SMTE 0096.

ESCI 4130 Oil Spill Prevention and Response Lab
1 Semester Credit Hour (2 Lab Hours)
Practical techniques for control, containment, countermeasures, removal,
and disposal of oil spills in an environmentally safe manner. Field
exercises will include use of boats, booms and skimmers. Fall, Spring,
Summer (on sufficient demand).
Prerequisite: ESCI 4270 .
May be taken concurrently.
Co-requisite: SMTE 0096.

ESCI 4170 Hazardous Waste Operations and Emergency Response Lab
1 Semester Credit Hour (2 Lab Hours)
Practical techniques for handling, reducing, and disposing of hazardous
wastes in an environmentally safe manner. Lab exercises in use of
personal protective gear and safe handling of hazardous substances. Fall,
Spring, Summer (on sufficient demand).
Prerequisite: ESCI 4270 .
May be taken concurrently.

ESCI 4201 Scientific Diving Techniques
2 Semester Credit Hours (2 Lecture Hours)
Theory, science, and art of underwater diving technology and its
application to scientific objectives. Course helps fulfill some training
requirements of the Texas A&M University-Corpus Christi Guidelines for
scientific diving.

ESCI 4202 Issues in Environmental Science
2 Semester Credit Hours (2 Lecture Hours)
Exploration of major issues in environmental science posing past, present
and future challenges. Selected readings, student presentations and
papers.
Prerequisite: ESCI 1401.

ESCI 4230 Oil Spill Prevention and Response Theory
2 Semester Credit Hours (2 Lecture Hours)
Historical perspective of laws and regulations governing oil spill
prevention and response. Current methods for control, containment,
countermeasures, removal, and disposal of oil spills in an environmentally
safe manner. Fall, Spring, Summer (on sufficient demand).

ESCI 4270 Hazardous Waste Operations and Emergency Response
2 Semester Credit Hours (2 Lecture Hours)
Study of the laws and regulations of hazardous waste management from
an historical perspective followed by current techniques for handling,
reducing, and disposing of hazardous wastes in an environmentally safe
manner. Fall, Spring, Summer (on sufficient demand).

ESCI 4301 Environmental Regulations
3 Semester Credit Hours (3 Lecture Hours)
A survey of state and federal environmental laws and regulations, and
their impact on the environment. Case studies of environmental issues and
legislated regulations.
Prerequisite: POLS 2305 and 2306.

ESCI 4320 Environmental Health
3 Semester Credit Hours (3 Lecture Hours)
Overview of the toxicology and epidemiology of pollutants in the
air, water and soil. Associations of environmental exposure with adverse
health effects such as cancer, cardiovascular disease, and reproductive
outcomes; also chemical markers and symptoms of disease. Pollutants
studied include lead, asbestos, radiation, radon, noise, metals,
halogenated hydrocarbons, aromatic hydrocarbons, silica, indoor
air quality, formaldehyde, and outdoor air pollutants. Offered on sufficient
demand.

ESCI 4321 Introduction to Soil and Groundwater Restoration
3 Semester Credit Hours (3 Lecture Hours)
Introduction to methods for restoring contaminated soil and groundwater
by examining the factors and processes influencing the efficacy of
remediation systems. An emphasis will be placed on the scientific
principles upon which soil and groundwater remediation is based. Cross
listed with GEOL 4321.

ESCI 4322 Introduction to Industrial Hygiene
3 Semester Credit Hours (3 Lecture Hours)
Introduction to health protection practices in the industrial environment.
Health basis for OSHA laws, regulations. Sampling and testing
procedures.

ESCI 4324 Introduction to Industrial Toxicology
3 Semester Credit Hours (3 Lecture Hours)
Review of human physiology, general concepts of toxicology: dose-
response relationship, interactions between the host and the agents,
risk assessment, to provide an introductory understanding of toxicology
related to the chemicals in the workplace.

ESCI 4332 Wetlands and Water Quality
3 Semester Credit Hours (3 Lecture Hours)
Introduction to wetland ecosystems (natural, constructed and restored)
with an emphasis on the role of wetlands in water quality. Topics
include wetland systems, their history and role in society, relationships
between biology, geology, ecology, hydrology and chemistry in wetland
environments. Offered on sufficient demand.
Prerequisite: BIOL 1407, CHEM 1411 or ESCI 1401.

ESCI 4335 Climate and Climate Variability
3 Semester Credit Hours (3 Lecture Hours)
Course intended to guide environmental science majors in developing
a conceptual understanding of Earth's global climate and its variability.
Review of past climates, present mean state of the climate system,
climate variability from seasonal to multidecadal time scales, and
climate change. Special attention given to climates of the Gulf of Mexico,
Caribbean Sea and surrounding land regions. Plausible climate-change
scenarios, as well as mitigation and adaptation strategies are also
discussed. Cross listed with ATSC 4335. Spring.
Prerequisite: (ESCI 3351 or 3403) and (PHYS 1401 or 2425).

ESCI 4340 Severe Weather
3 Semester Credit Hours (3 Lecture Hours)
Introduction to mesoscale weather systems including thunderstorms,
squall lines and hurricanes, as well as the mechanisms of tornado and
lighting. Methods of observing, analyzing, and predicting these severe
weather systems with the interpretation of satellite and radar images will
also be introduced in this class.
Prerequisite: ESCI 3403.
ESCI 4344 Air Pollution and the Clean Air Act
3 Semester Credit Hours (3 Lecture Hours)
Introduction to the chemistry and physics of air pollution and regulations.
Topics include photochemistry, acid rain, air pollution meteorology and
dispersion, global change, and the Clean Air Act.

ESCI 4360 Physical Oceanography
3 Semester Credit Hours (3 Lecture Hours)
Physical description of the sea, physical properties of seawater and
sea ice, methods and measurements, wind-driven ocean circulation,
thermohaline ocean circulation, boundary processes, waves, tides and
mixing. Seasonal and interannual variability such as El Niño/Southern
Oscillation phenomena. Implications for marine biology, marine geology,
human impacts, other topics. Fall.
Prerequisite: PHYS 2426.

ESCI 4365 Occupational Safety and Accident Prevention
3 Semester Credit Hours (3 Lecture Hours)
This course provides students with fundamental knowledge of regulatory
requirements on occupational safety and practical techniques on
accident prevention in the work environment. Offered on sufficient
demand.

ESCI 4408 Environmental Microbiology
4 Semester Credit Hours (3 Lecture Hours, 2 Lab Hours)
Relationships between microorganisms and their biotic and abiotic
environment. Current topics such as air quality (i.e., molds), water quality
and bioremediation will be discussed. Laboratory will include techniques
for sampling from soil, air and water. Offered on sufficient demand.
Prerequisite: BIOL 2421.
Co-requisite: SMTE 0096.

ESCI 4480 Environmental Site Assessment
4 Semester Credit Hours (3 Lecture Hours, 2 Lab Hours)
Interdisciplinary application of environmental regulations, risk
assessment to specific examples. Knowledge of United States
environmental regulations assumed; ESCI 4301 Environmental
Regulations recommended.

ESCI 4490 Selected Topics
4 Semester Credit Hours (4 Lecture Hours, 4 Lab Hours)
Subject materials variable. May be repeated for credit when topics are
significantly different. Faculty approval required. Offered on sufficient
demand.

ESCI 4496 Directed Independent Study
1-4 Semester Credit Hours
Requires a formal proposal of study to be completed in advance
of registration and to be approved by the supervising faculty, the
Chairperson, and the Dean of the College. Fall, Spring, Summer.

ESCI 4498 Internship in Environmental Science
1-4 Semester Credit Hours
Two to four semester hours of credit may be earned by working in an
internship position in a governmental agency or industry.