Biology, BS - Grades 7-12 Life Science Education Concentration

Program Description

Introduction
The College of Science and Engineering is committed to the support of students seeking to become science, mathematics and technology educators at all levels. The Science, Mathematics and Technology Education (SMTE) program offers content courses for students seeking K-12 science, mathematics and technology education. SMTE classes are also an integral part of the course work for degrees preparing students for Teacher Certifications. The SMTE program does not offer a degree; rather, degrees leading to Teacher Certification are offered by other Science and Engineering programs and by the College of Education and Human Development. Students seeking to teach in the elementary and secondary schools of Texas must meet degree requirements as well as certification requirements. The requirements and procedure to become a science, mathematics or technology teacher in Texas are outlined below. Undergraduate students who are graduating from the College of Science & Engineering or the College of Liberal Arts who are seeking initial teacher certification at the 4-8, 7-12 and EC-12 levels prior to graduation, automatically qualify for the Minor in Education.

How to Become a Science, Mathematics or Technology Teacher in Texas

In order to be recommended for teacher certification at this university, a candidate must fulfill three basic requirements:

1. have a bachelor's degree from an accredited college or university that includes an academic major and teacher training courses,
2. complete teacher training through an approved program, and
3. successfully complete the appropriate teacher certification tests for the subject and grade level that the candidate wishes to teach.

Additional information on the requirements to become a teacher in Texas can be obtained at the State Board of Educator Certification (SBEC) website: http://www.sbec.state.tx.us/SBECOnline/certinfo/becometeacher.asp. This website also provides information on the resources available to help students pay for a teacher training program.

SBEC has approved three levels of teacher certification for regular educators:

1. Early childhood to grade 6 which includes foundation subjects and enrichment areas such as art, PE, and music,
2. Grade 4-8 which includes the foundation areas only, and
3. Grade 7-12 certification.

Students can find information on the different certifications at the official Texas Examinations of Educator Standards (TExES) Web site: http://www.texas.ets.org. Texas A&M University-Corpus Christi offers several degrees leading to a number of these teacher certifications. The College of Education and Human Development offers several degrees leading to teacher certification. The College of Science and Engineering offers bachelor's degrees leading to teacher certification in the sciences, mathematics and technology at the 4-8 and the 7-12 levels:

- Biology, BS - Grades 7-12 Life Science Education Concentration (120-122 sem. hrs.) Details immediately follow below.
- Chemistry, BS - Grades 7-12 Physical Science Education Concentration (http://catalog.tamucc.edu/undergraduate/science-engineering/bachelors/chemistry-bs-grades-7-12-physical-science-education-concentration/) (126-128 sem. hrs.)
- Environmental Science, BS - Grades 4-8 Science Education Concentration (http://catalog.tamucc.edu/undergraduate/science-engineering/bachelors/environmental-science-bs-grades-4-8-science-education-concentration/) (125-130 sem. hrs.)
- Elementary Education, BS - Grades 4-8 with Mathematics Certification (http://catalog.tamucc.edu/undergraduate/science-engineering/teaching-certificates/elementary-education-bs-grades-4-8-mathematics-certification/) (College of Education and Human Development)
- Mathematics, BS - Grades 7-12 Mathematics Education Concentration (http://catalog.tamucc.edu/undergraduate/science-engineering/bachelors/mathematics-bs-grades-7-12-education-concentration/) (120 sem. hrs.)

Mathematics 7-12 teacher certification is also possible with an undergraduate major other than mathematics. Details can be found in the Mathematics, Grades 7-12 Teacher Certification Without a Mathematics Major (http://catalog.tamucc.edu/undergraduate/science-engineering/teaching-certificates/mathematics-grades-7-12-teacher-certification-without-major/) section.

The individual programs, Biology, Chemistry, Environmental Science, and Mathematics offer these degrees and courses.

Students seeking Teacher Certification are also strongly urged to contact the Certification Officer in the College of Education and Human Development about current requirements and procedures that must be met to obtain the certificate. In particular, students following a degree plan leading to teacher certification must be admitted to the Teacher Education Program at Texas A&M University-Corpus Christi prior to enrolling in any 4000 level EDCI or EDUC courses. Application forms for admission to the teacher education program may be obtained from the Undergraduate or Certification Office, room FC 201. The students are referred to the College of Education and Human Development section of this catalog for more information on the Teacher Education Program.

Grade Point Average for Admission to Teacher Education

A minimum grade point average of 2.75 (4.0 = A) in all work attempted, a minimum grade point average of 2.75 in all science, math, or specialization areas, and no grade below “C” in any science or mathematics course on a student's degree plan and/or education courses within the professional block of courses are required. (See College of Education and Human Development, “Admission to Teacher Education” and “Admission to Clinical Teaching” for other requirements.)

Alteration of a Certification Plan

Any amendment to a degree plan originally filed must be approved by the student’s academic advisor, the Department Chair, the Dean of the College of Science and Engineering, and the Certification Officer of the College of Education and Human Development for the degree to be granted.

General Requirements

The Life Science Education plan is designed for those students who desire a Bachelor of Science Degree in Biology and a secondary teaching certificate in life science. The requirements for a Bachelor of Science in Biology degree...
with grades 7-12 Life Science Education Concentration are a minimum of 120 semester hours. Forty-two are designated University core curriculum courses; 39 are biology teaching core courses, and 27 are professional development courses. Other requirements include a psychology course and upper division elective courses.

Students may have to take additional hours to meet university requirements such as First-Year Seminar courses or major requirements that include 4 hour math and science courses.

Additional Educational Requirements for Certification

Students seeking teaching certification are required to complete 9 credits of English coursework and 3 credits of Public Speaking coursework.

ENGL 1302 Writing and Rhetoric (3 sch) and a literature course (ENGL 2316 Literature and Culture (3 sch) or ENGL 2332 Literature of the Western World: From the Classics to the Renaissance (3 sch)), or ENGL 2333 Literature of the Western World: From the Enlightenment to the Present (3 sch) from the core curriculum will satisfy 6 of the 9 required credits. Either **COMM 1311 Foundation of Communication (3 sch)** or **COMM 1315 Public Speaking (3 sch)** will satisfy the public speaking course requirement.

Program Requirements

Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNIV 1101</td>
<td>First-Year Seminar I *</td>
<td>1</td>
</tr>
</tbody>
</table>

Core Curriculum Program

| University Core Curriculum | 42 |

Life Science Education students must take specific courses to ensure they have the proper prerequisites for more advanced coursework:

Communication

| COMM 1311 Foundation of Communication * | 2 |
| ENGL 1302 Writing and Rhetoric * | |

Mathematics

| MATH 2413 Calculus I (lab hour counts under Component Area Option) | 3 |

Life and Physical Sciences

| BIOL 1406 Biology I (lab hour counts under Component Area Option) | |
| BIOL 1407 Biology II (lab hour counts under Component Area Option) | |

Language, Philosophy, and Culture

Students must select one literature course of the following:

ENGL 2316 Literature and Culture *	
ENGL 2332 Literature of the Western World: From the Classics to the Renaissance *	
ENGL 2333 Literature of the Western World: From the Enlightenment to the Present *	

Component Area Option

BIOL 1406 Biology I (Lab Hours)	
BIOL 1407 Biology II (Lab Hours)	
MATH 2413 Calculus I (Lab Hours)	
CHEM 1411 General Chemistry I (lab hour counts under Support Areas)	

Support Areas

CHEM 1412 General Chemistry II	4
CHEM 3411 Organic Chemistry I	4
ENGL 3301 Technical and Professional Writing	3
CHEM 1411 General Chemistry I (1 sem. hr. lab) *	1

Biology Teaching Core

BIOL 1406 Biology I (included in University Core)	
BIOL 1407 Biology II (included in University Core)	
BIOL 2371 Principles of Evolution	3
BIOL 2401 Anatomy and Physiology I	4
BIOL 2416 Genetics	4
BIOL 2421 Microbiology	4
BIOL 3428 Principles of Ecology	4
MATH 2413 Calculus I (included in University Core)	
SMTE 4270 Science Education Topics I *	2
SMTE 4217 Secondary Approaches to the Life Sciences	2
SMTE 4320 Secondary Science Laboratory Techniques	3

Chemistry of Life/Cell Biology Requirement

| BIOL 3403 Molecular Biology | 4 |
| or BIOL 3410 Cell Biology | |

Organismal (Animal) Requirement

| BIOL 3413 Invertebrate Zoology | 4 |
| or BIOL 3414 Vertebrate Zoology | |

1: Full-time, first time in college students are required to take the first-year seminars. The First-Year Seminars will not count towards the 120 hour minimum requirements to graduate.

- UNIV 1101 First-Year Seminar I (1 sch)
- UNIV 1102 First-Year Seminar II (1 sch)
Six of these credit hours are taken in the University Core Curriculum. To become certified to teach, a total of 9 sem. hrs. of English are required.

Support Areas

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 2472 - Principles of Botany</td>
<td>4</td>
</tr>
<tr>
<td>or BIOL 4422 - Plant Taxonomy</td>
<td></td>
</tr>
</tbody>
</table>

Upper Division Biology Elective Requirement

Select one of the following electives:

- BIOL 3325 - Biostatistics
- BIOL 4301 - Embryology
- BIOL 4302 - Coral Reef Conservation
- BIOL 4308 - Biogeography
- BIOL 4319 - Biology of Marine Mammals
- BIOL 4323 - Global Change Ecology
- BIOL 4328 - Fisheries
- BIOL 4335 - Conservation Biology
- BIOL 4343 - Oceans and Human Health
- BIOL 4370 - Mariculture
- BIOL 4371 - Population Genetics
- BIOL 4304 - Biology of Viruses

Other upper division Biology courses may be taken with approval.

Professional Development and Reading Sequence

Preliminary Courses

- READ 3353 - Content Area Reading for Secondary Students ^ 3
- EDUC 3311 - School and Society ^ 3

Field-Based Semester

- EDUC 4605 - Planning, Teaching, Assessment and Technology 6
- EDUC 4321 - Instructional Design for Special Populations 3

Student Teaching Semester

- EDUC 4311 - Classroom Management 3
- EDUC 4995 - Clinical Teaching 9

Total Hours 124

1. Students entering with some college credit may not be required to take one or both of the First-Year Seminar courses (see the "First-Year Seminar (http://catalog.tamucc.edu/undergraduate/university-college/programs/first-year-learning-communities-program/)") section of the Core Curriculum Program for rules and exceptions concerning these courses. The hours associated with the First-Year Seminars do not count toward the total number of semester credit hours needed to graduate.

2. COMM 1311 Foundation of Communication (3 sch) meets the public speaking requirement for teacher certification; ENGL 1301 Composition I (3 sch) can be used to fulfill the public speaking requirement, but may not be used to fulfill other requirements in English.

3. Students who are not eligible to enroll in MATH 2413 Calculus I (4 sch) will need to take additional prerequisite courses (3-9 sem. hrs.) depending on their math placement level (i.e., MATH 0300 Developmental Mathematics (3 sch), MATH 1314 College Algebra (3 sch) and MATH 1316 Trigonometry (3 sch), or MATH 2312 Precalculus (3 sch)).

* Online offering
^ Blended offering

Courses

BIOL 1308 Science for Life I (Non-Majors Biology)

3 Semester Credit Hours (3 Lecture Hours, 3 Lab Hours)
A NON-MAJORS SCIENCE COURSE IN WHICH STUDENTS WILL LEARN BASIC BIOLOGICAL PRINCIPLES, IDENTIFY THE RELEVANCE OF SCIENCE IN EVERYDAY LIFE, AND WILL UNDERSTAND THE SCIENTIFIC METHOD. HANDS-ON LAB ACTIVITIES WILL REINFORCE COURSE CONCEPTS. THIS COURSE DOES NOT SUBSTITUTE FOR BIOL 1406 - BIOLOGY I OR BIOL 1407 - BIOLOGY II FOR SCIENCE MAJORS.
Co-requisite: SMTE 0091.
TCCNS: BIOL 1308

BIOL 1406 Biology I

4 Semester Credit Hours (3 Lecture Hours, 2 Lab Hours)
4 Semester Credit Hours (3 Lecture Hours, 2 Lab Hours)
PRESENTATION OF BASIC BIOLOGICAL CONCEPTS INCLUDING SCIENTIFIC METHOD, CYTOLOGY, ENERGETICS, NUCLEIC ACIDS AND GENETICS. THIS COURSE IS SUITABLE FOR ALL MAJORS.
Prerequisite: (MATH 1314, 1316, 2305, 2413, minimum score of 21 in ‘ACT Math’ or minimum score of 550 in ‘SAT Math’).
Co-requisite: SMTE 0091.
TCCNS: BIOL 1406

BIOL 1407 Biology II

4 Semester Credit Hours (4 Lecture Hours)
THIS COURSE IS AN OVERVIEW OF THE MAJOR CONCEPTS IN BIOLOGICAL DIVERSITY AND PLANT AND ANIMAL BIOLOGY. LABORATORY WORK WILL INCLUDE INDIVIDUAL/TEAM ACTIVITIES AS WELL AS TECHNOLOGY-RELATED ASSIGNMENTS.
Prerequisite: BIOL 1406.
Co-requisite: SMTE 0091.
TCCNS: BIOL 1407

BIOL 2300 Science Communication

3 Semester Credit Hours (3 Lecture Hours)
THIS COURSE INVOLVES PRESENTATION AND DISCUSSION OF SELECTED TOPICS RELATING TO THE PROFESSIONAL SKILLS OF PRACTICING BIOLOGICAL SCIENTISTS, INCLUDING BASIC SOFTWARE INSTRUCTION, A REVIEW OF LIBRARY SERVICES PERTINENT TO SCIENCE, THE APPLICATION OF SCIENTIFIC LITERATURE RESEARCH SKILLS, HYPOTHESIS GENERATION AND STATISTICAL TESTS, CRITICAL REVIEWS OF SCIENTIFIC ARTICLES, AND AN INTRODUCTION TO ETHICAL ISSUES IN SCIENCE.

Support Areas

To become certified to teach, a total of 9 sem. hrs. of English are required. Six of these credit hours are taken in the University Core Curriculum.
BIOL 2371 Principles of Evolution
3 Semester Credit Hours (3 Lecture Hours)
AN OVERVIEW OF THE MECHANISMS BY WHICH HERITABLE INFORMATION CHANGES, ADAPTATIONS DEVELOP AND SPECIES DIVERSIFY. PROVIDES A FOUNDATION FOR MOLECULAR, CELLULAR, AND ORGANISMAL STUDIES IN THE BIOLOGICAL SCIENCES.
Prerequisite: BIOL 1406 and 1407.

BIOL 2401 Anatomy and Physiology I
4 Semester Credit Hours (4 Lecture Hours)
STRUCTURE AND FUNCTION OF THE HUMAN BODY EMPHASIZING BIOLOGICAL CHEMISTRY, CELL BIOLOGY, TISSUES, AND THE INTEGUMENTARY, SKELETAL, MUSCULAR, AND NERVOUS SYSTEMS. NOT RECOMMENDED FOR MAJORS IN THE COLLEGE OF SCIENCE AND ENGINEERING. TO COUNT THIS COURSE TOWARD A MAJOR IN THE DEPARTMENT OF LIFE SCIENCES, A STUDENT MUST DEMONSTRATE THAT IT IS REQUIRED BY PROFESSIONAL SCHOOLS IN HIS OR HER CAREER TRACK AND OBTAIN APPROVAL FOR A SUBSTITUTION FROM HIS OR HER FACULTY MENTOR. STUDENTS MAY NOT RECEIVE CREDIT FOR BOTH THIS COURSE AND EITHER BIOL 3425 - FUNCTIONAL ANATOMY OR BIOL 3430 - PHYSIOLOGY.
Co-requisite: SMTE 0091.
TCCNS: BIOL 2401

BIOL 2402 Anatomy and Physiology II
4 Semester Credit Hours (4 Lecture Hours)
STRUCTURE AND FUNCTION OF THE HUMAN BODY EMPHASIZING BLOOD, GROWTH, DEVELOPMENT, GENETICS, AND THE ENDOCRINE, DIGESTIVE, RESPIRATORY, CARDIOVASCULAR, LYMPHATIC, IMMUNE AND UROGENITAL SYSTEMS. NOT RECOMMENDED FOR MAJORS IN THE COLLEGE OF SCIENCE AND ENGINEERING. TO COUNT THIS COURSE TOWARD A MAJOR IN THE DEPARTMENT OF LIFE SCIENCES, A STUDENT MUST DEMONSTRATE THAT IT IS REQUIRED BY PROFESSIONAL SCHOOLS IN HIS OR HER CAREER TRACK AND OBTAIN APPROVAL FOR A SUBSTITUTION FROM HIS OR HER FACULTY MENTOR. STUDENTS MAY NOT RECEIVE CREDIT FOR BOTH THIS COURSE AND EITHER BIOL 3425 - FUNCTIONAL ANATOMY OR BIOL 3430 - PHYSIOLOGY.
Prerequisite: BIOL 2401.
Co-requisite: SMTE 0091.
TCCNS: BIOL 2402

BIOL 2416 Genetics
4 Semester Credit Hours (3 Lecture Hours)
PRINCIPLES OF GENETIC TRANSMISSIONS AND MOLECULAR BASIS OF HEREDITY AND VARIATION. WEEKLY RECITATION PERIODS WILL INVOLVE TEAM ASSIGNMENTS, PROBLEM SOLVING ACTIVITIES, AND SEMINARS.
Prerequisite: BIOL 1406 and 1407.
TCCNS: BIOL 2416

BIOL 2420 Principles of Microbiology
4 Semester Credit Hours (4 Lecture Hours)
INTRODUCTION TO MICROORGANISMS WITH EMPHASIS ON THOSE OF IMPORTANCE IN PATIENT CARE. PRINCIPLES OF DISINFECTION, STERILIZATION, IMMUNITY. THIS CLASS IS INTENDED FOR NURSING MAJORS; IT CANNOT SUBSTITUTE FOR BIOL 2421 - MICROBIOLOGY.
Co-requisite: SMTE 0092.
TCCNS: BIOL 2420

BIOL 2421 Microbiology
4 Semester Credit Hours (3 Lecture Hours, 3 Lab Hours)
AN INTRODUCTION TO MICROORGANISMS INCLUDING THE BACTERIA, FUNGI, AND VIRUSES. LABORATORY INVOLVES MICROBIOLOGICAL TECHNIQUES AND DEVELOPMENT OF BASIC LABORATORY SKILLS.
Prerequisite: BIOL 1406, 1407, CHEM 1411 and 1412.
Co-requisite: SMTE 0092.
TCCNS: BIOL 2421

BIOL 2472 Principles of Botany
4 Semester Credit Hours (3 Lecture Hours, 3 Lab Hours)
INTRODUCTION TO THE STRUCTURE, FUNCTION, DIVERSITY AND APPLICATION OF PLANTS. LABORATORY FOCUS ON ANATOMICAL FEATURES, PHYSIOLOGICAL ADAPTATIONS, CLASSIFICATION, AND LIFE CYCLES.
Prerequisite: BIOL 1407 and CHEM 1411.
Co-requisite: SMTE 0091.

BIOL 3300 Animal Nutrition
3 Semester Credit Hours (3 Lecture Hours)
EXAMINES THE DIETARY REQUIREMENTS OF BOTH COMPANION ANIMALS AND LIVESTOCK. INCLUDES THE ANATOMY, PHYSIOLOGY AND BIOCHEMISTRY OF THE GASTROINTESTINAL SYSTEM, NUTRIENT PROCUREMENT AND USE, FEED ADDITIVES, GROWTH STIMULANTS, METABOLIC DISEASES, AND DIET THERAPY. CROSS LISTED WITH BIMS 3300.
Prerequisite: BIOL 1407 and CHEM 3411 and (CHEM 3412 or 3412*).
* May be taken concurrently.

BIOL 3325 Biostatistics
3 Semester Credit Hours (3 Lecture Hours)
THE APPLICATION OF STATISTICAL ANALYSES TO BIOLOGICAL DATA. STUDENTS WILL GAIN AN UNDERSTANDING OF HOW TO APPLY STATISTICAL ANALYSES TO BIOLOGICAL DATA THROUGH STUDY OF THE PRINCIPLES OF EXPERIMENTAL DESIGN INCLUDING HOW TO FRAME INFORMATIVE RESEARCH QUESTIONS. AT A FUNDAMENTAL LEVEL, THESE CONCEPTS ARE LINKED TO THE PHILOSOPHY OF SCIENCE AND OUR UNDERSTANDING OF THE WAY THE WORLD WORKS.

BIOL 3345 Cell Physiology
3 Semester Credit Hours (3 Lecture Hours)
Emphasis on cellular functions that underlie physiological processes, transport across membranes, membrane potential and excitability, the cell nucleus, and organelles and their relationship to energy, metabolism, and transport mechanisms within the cell. Offered during Spring semester of odd-numbered years
Prerequisite: BIOL 2200 or BIMS 2200 and BIOL 3410.

BIOL 3403 Molecular Biology
4 Semester Credit Hours (3 Lecture Hours, 3 Lab Hours)
PRINCIPLES OF MOLECULAR BIOLOGY INCLUDING ADVANCED CONCEPTS OF GENE STRUCTURE, EXPRESSION AND REGULATION, CHROMATIN STRUCTURE, RECOMBINATION, AND CURRENT MOLECULAR BIOLOGY TECHNIQUES. LABORATORY EMPHASIS IS ON BASIC SKILLS FOR NUCLEIC ACID ANALYSES, INCLUDING EXTRACTION, PCR AMPLIFICATION, QUANTIFICATION, RESTRICTION, AND ELECTROPHORESIS. DNA SEQUENCING-BASED APPROACHES ARE COVERED INCLUDING BIOINFORMATICS FOR SEQUENCE COMPARISONS, POLYMORPHISMS, AND MOLECULAR IDENTIFICATION. CROSS LISTED WITH BIMS 3403.
Prerequisite: BIOL 2416 and 2421.
Co-requisite: SMTE 0092.
BIOL 3410 Cell Biology
4 Semester Credit Hours (4 Lecture Hours)
STUDY OF CELLULAR ARCHITECTURE AND FUNCTION. TOPICS INCLUDE MEMBRANES, TRANSPORT, ORGANELLES, CYTOSKELETON, AND SIGNALING MECHANISMS. INTERRELATIONSHIPS OF STRUCTURE, FUNCTION, ENERGY AND METABOLISM ARE EXPLORED. LABORATORY WILL EMPHASIZE BASIC TECHNIQUES OF CELL BIOLOGY.
Prerequisite: BIOL 2416 and CHEM 3411.
Co-requisite: SMTE 0091.

BIOL 3413 Invertebrate Zoology
4 Semester Credit Hours (3 Lecture Hours, 1 Lab Hour)
STUDY OF ANIMALS WITHOUT SPINAL CORDS, INCLUDINGlässes, CRUSTACEANS, MOLLUSCS, ECHINODERMS, AND APLACOPHORANS. LECTURE WILL EMPHASIZE STRUCTURAL AND FUNCTIONAL ADAPTATIONS OF SPECIES IN VARIOUS ENVIRONMENTS. LABORATORY WILL INVOLVE FIELD TRIPS AND SURVEY COLLECTIONS.
Prerequisite: BIOL 1407.
Co-requisite: SMTE 0091.

BIOL 3414 Vertebrate Zoology
4 Semester Credit Hours (4 Lecture Hours)
STUDY OF BODY FORM AND FUNCTION OF VERTEBRATES, INCLUDING THE ORGANIZATION OF THE MAJOR PHYLUMS. TOPICS INCLUDE EVOLUTION, HISTOLOGY, AND BIOCHEMISTRY OF VERTEBRATE SPECIES. LABORATORY WILL INVOLVE FIELD TRIPS AND SURVEY COLLECTIONS.
Prerequisite: BIOL 1407.

BIOL 3425 Functional Anatomy
4 Semester Credit Hours (4 Lecture Hours)
GENERAL TRENDS IN MORPHOLOGICAL DEVELOPMENT AND ADAPTATION AS DEMONSTRATED BY THE ANATOMY AND EMBRYOLOGY OF Vertebrates. STUDENTS MAY NOT RECEIVE CREDIT FOR BOTH THIS COURSE AND EITHER BIOL 2401 - ANATOMY AND PHYSIOLOGY I OR BIOL 2402 - ANATOMY AND PHYSIOLOGY II.
Prerequisite: BIOL 1407.
Co-requisite: SMTE 0091.

BIOL 3428 Principles of Ecology
4 Semester Credit Hours (3 Lecture Hours, 3 Lab Hours)
INTRODUCTION TO THE INTERRELATIONSHIPS OF ORGANISMS AND THEIR ENVIRONMENT. POPULATION STRUCTURE, COMMUNITY CLASSIFICATION AND REGULATION, AND ENERGY FLOW IN ECOSYSTEMS WILL ALSO BE COVERED. LABORATORY SECTIONS WILL FOCUS ON EXPERIMENTAL DESIGN AND FIELD TECHNIQUES IN ECOLOGY.
Prerequisite: BIOL 1407 and (BIOL 2200, 2300, BIMS 2200 or UNIV 1101 and UNIV 1102) and CHEM 1411 and (MATH 2413 or 2413^1).
^ May be taken concurrently.
Co-requisite: SMTE 0091.

BIOL 3430 Physiology
4 Semester Credit Hours (4 Lecture Hours)
THE STUDY OF PHYSIOLOGICAL PROCESSES THAT ARE THE PRODUCT OF COMPLEX INTERACTIONS BETWEEN TISSUES, ORGANS AND ORGAN SYSTEMS, WITH EMPHASIS ON THE CIRCULATORY, RESPIRATORY, ENDOCRINE, MUSCULAR, DIGESTIVE, AND UROGENITAL SYSTEMS. PARTICULAR FOCUS ON HOMEOSTASIS, AND THE ROLE OF THE ENVIRONMENT AND EVOLUTION ON ORGAN SYSTEMS. STUDENTS MAY NOT RECEIVE CREDIT FOR BOTH THIS COURSE AND EITHER BIOL 2401 - ANATOMY AND PHYSIOLOGY I, OR BIOL 2402 - ANATOMY AND PHYSIOLOGY II.
Prerequisite: BIOL 1407.
Co-requisite: SMTE 0091.

BIOL 3455 Plant form and Function
4 Semester Credit Hours (3 Lecture Hours, 3 Lab Hours)
ANATOMY OF VEGETATIVE AND REPRODUCTIVE ORGANS OF PLANTS, UNIQUE CELLULAR FEATURES, DEVELOPMENT AND DIFFERENTIATION OF CELL AND TISSUE TYPES. EMPHASIS ON PHYSIOLOGICAL MECHANISMS OF RESPONSE AND ADAPTATION TO THE ENVIRONMENT.
Prerequisite: BIOL 1407.
Co-requisite: SMTE 0091.

BIOL 3479 Biogeography
4 Semester Credit Hours (4 Lecture Hours)
EMPHASIZING MARINE AND TERRESTRIAL PLANT AND ANIMAL BIOLOGY AND ECOLOGY IN THE 21ST CENTURY AND DISCUSSION OF CHALLENGES AND THREATS FACING PLANTS AND ANIMALS. TOPICS Include BIOSPECIES OF CHALLENGES AND THREATS FACING CORAL REEF Ecosystems, CLIMATE CHANGE IMPACTS, COARAL BLEACHING, OVER-FISHING AND THE EFFECTIVNESS OF MARINE PROTECTED AREAS.
Prerequisite: BIOL 2416.

BIOL 4301 Embryology
3 Semester Credit Hours (3 Lecture Hours)
STUDIES THE EVENTS THAT OCCUR JUST PRIOR TO AND DURING GESTATION. INCLUDES GAMETOGENESIS, CHROMOSOMAL AND SINGLE GENE ABERRATIONS, TERAOTOLOGY, AND THE DEVELOPMENT OF THE BODY SYSTEMS.
Prerequisite: BIOL 2416.

BIOL 4302 Coral Reef Conservation
3 Semester Credit Hours (3 Lecture Hours)
SURVEY OF CHALLENGES AND THREATS FACING CORAL REEF ECOSYSTEMS IN THE 21ST CENTURY AND DISCUSSION OF CONSERVATION AND MANAGEMENT STRATEGIES. TOPICS Include BIOLOGY AND ECOLOGY OF REEF ECOSYSTEMS, CLIMATE CHANGE IMPACTS, COARAL BLEACHING, OVER-FISHING AND THE EFFECTIVENESS AND DESIGN OF MARINE PROTECTED AREAS.

BIOL 4304 Biology of Viruses
3 Semester Credit Hours (3 Lecture Hours)
INTRODUCTION TO THE STUDY OF VIRUSES, INCLUDING VIRAL LIFE CYCLES, REPLICATION SCHEMES AND BALTIMORE CLASSIFICATION OF REPRESENTATIVE BACTERIOPHAGES, PLANT AND ANIMAL VIRUSES. EMPHASIS ON ANALYSIS AND REVIEW OF PRIMARY LITERATURE ON VIRUSES.
Prerequisite: BIOL 2416, 2421 and CHEM 1411.

BIOL 4308 Biogeography
3 Semester Credit Hours (3 Lecture Hours)
INTRODUCTION TO THE STUDY OF BACTERIOPHAGES, PLANT AND ANIMAL SPECIES AND COMMUNITIES. OFFERED SPRING EVEN YEARS.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 4311</td>
<td>Biological Bases of Behavior</td>
<td>3</td>
<td>BIOL 1407.</td>
</tr>
<tr>
<td>BIOL 4312</td>
<td>Mariculture Techniques</td>
<td>3</td>
<td>BIOL 1407.</td>
</tr>
<tr>
<td>BIOL 4319</td>
<td>Biology of Marine Mammals</td>
<td>3</td>
<td>BIOL 4319.</td>
</tr>
<tr>
<td>BIOL 4323</td>
<td>Global Change Ecology</td>
<td>3</td>
<td>BIOL 4328.</td>
</tr>
<tr>
<td>BIOL 4328</td>
<td>Fisheries</td>
<td>3</td>
<td>BIOL 4316 and 4310 or CHEM 4401.</td>
</tr>
<tr>
<td>BIOL 4329</td>
<td>Fisheries Techniques</td>
<td>3</td>
<td>BIOL 4328.</td>
</tr>
<tr>
<td>BIOL 4334</td>
<td>Biology and Ecology of Coral Reefs</td>
<td>3</td>
<td>BIOL 4328.</td>
</tr>
<tr>
<td>BIOL 4335</td>
<td>Conservation Biology</td>
<td>3</td>
<td>BIOL 3428.</td>
</tr>
<tr>
<td>BIOL 4336</td>
<td>Marine Ecology</td>
<td>3</td>
<td>BIOL 1407.</td>
</tr>
<tr>
<td>BIOL 4340</td>
<td>Genomics, Proteomics and Bioinformatics</td>
<td>3</td>
<td>BIOL 2416 and 3410 or CHEM 4401.</td>
</tr>
<tr>
<td>BIOL 4343</td>
<td>Oceans and Human Health</td>
<td>3</td>
<td>BIOL 4343.</td>
</tr>
<tr>
<td>BIOL 4345</td>
<td>Research and Design</td>
<td>1-3</td>
<td>BIOL 4350.</td>
</tr>
<tr>
<td>BIOL 4353</td>
<td>Down the River: Biology of Gulf Coast Fishes</td>
<td>3</td>
<td>BIOL 4353.</td>
</tr>
<tr>
<td>BIOL 4355</td>
<td>Public Aquarium and Animal Care Operations</td>
<td>3</td>
<td>BIOL 4355.</td>
</tr>
</tbody>
</table>

This course examines the processes by which neuronal circuits generate behaviors and the mechanisms by which experience modulates the activity of these circuits.

This study and hands-on application of biological, mechanical, and other concepts required to develop the skills and techniques necessary for efficient operation and management of public and private aquaculture facilities.

An introduction to marine mammals, with a focus on their interactions with their biotic and abiotic environment.

An introduction to the effects of climatic and anthropogenic change on terrestrial and aquatic structure and function. Includes readings from the current literature and discussion of controversial articles.

A study of theory and techniques in fisheries science, including practical fisheries sampling designs and techniques, behavior of fisheries populations and application to resource management with emphasis in tide-influenced waters. Includes readings in the current literature.

A study of theory and techniques in fisheries science, including practical fisheries sampling designs and techniques, behavior of fisheries populations and application to resource management with emphasis in tide-influenced waters.

This class is designed to provide practical experience in the theory and application of traditional and modern fisheries sampling and analytical techniques used in fisheries science and management. This is a hands-on field- and laboratory-based course that will develop skills that are most commonly used by fisheries biologists and technicians.

This course will introduce the biology of corals, describe the abiotic and biotic interactions among coral reef ecosystem inhabitants, identify the threats of climate change, and discuss the conservation and management of reefs for the future.

Principles and theories relating to the conservation of biological diversity, including patterns and processes creating biological diversity, estimates of extinction rates, consequences of losses of biodiversity and causes of diversity loss.

Habitats and community structure in marine environments; biotic and abiotic factors governing the distribution of marine organisms.

An introduction to integrative biological study using genome-wide approaches and bioinformatics. The “-omics” technologies (genomics, proteomics, metabolomics, etc.) will be surveyed for current and potential contributions to understanding biological function at molecular, cellular, organismal and ecosystem levels.

Healthy oceans are essential to the habitability of our planet – for humans and all other forms of life. Students will explore links between oceans, pollution, human well-being, ecosystem services, resource management, and the science and legislation governing the enforcement of water quality standards.

This course covers aspects of ecology and biogeography of riverine and estuarine fishes while exposing students to field sampling techniques and museum preparation of specimens. This will be a unique opportunity for students to gain an in-depth understanding of the biological complexity of Texas Gulf Coast river systems while gaining hands-on experience in field and museum ichthyological techniques that are employed by state, federal and academic researchers alike.

This course examines the unique requirements needed for public aquariums and zoos to balance animal care and health with public display for general education and conservation research.
BIOL 4370 Mariculture
3 Semester Credit Hours (3 Lecture Hours)
SURVEY OF THE PHYSIOLOGICAL, BEHAVIORAL, ENVIRONMENTAL, AND ECONOMIC PARAMETERS GOVERNING THE CULTURE OF SELECTED AQUATIC SPECIES. INCLUDED ARE TECHNIQUES EMPLOYED WORLDWIDE TO PRODUCE AQUATIC PRODUCTS.
Prerequisite: BIOL 1407.

BIOL 4371 Population Genetics
3 Semester Credit Hours (3 Lecture Hours)
AN INTRODUCTION TO EVOLUTIONARY PROCESSES AND THEIR GENETIC BASIS, THIS COURSE FOCUSES ON THEORETICAL AND EXPERIMENTAL APPROACHES TO THE STUDY OF POPULATION GENETICS, QUANTITATIVE GENETICS, EVOLUTIONARY ECOLOGY, AND MOLECULAR EVOLUTION. OFFERED FALL ODD YEARS.
Prerequisite: BIOL 2416 and MATH 2413.

BIOL 4396 Directed Independent Study
1-3 Semester Credit Hours (1-3 Lecture Hours)
RESEARCH IN AREAS OF CURRENT INTEREST. WRITTEN REPORT REQUIRED. MAY BE REPEATED FOR A MAXIMUM OF 6 SEMESTER HOURS.
Prerequisite: BIOL 1407 and CHEM 1412.

BIOL 4399 Directed Independent Research
3-6 Semester Credit Hours (3-6 Lecture Hours)
3-6 sem. hrs. Independent laboratory- or field-based research project on topic of current interest. Project developed in conjunction with a faculty advisor. Written report required. May be repeated once for a total of 6 semester credit hours.

BIOL 4405 Limnology
4 Semester Credit Hours (4 Lecture Hours)
THE STUDY OF THE FUNCTIONAL RELATIONSHIPS AND PRODUCTIVITY OF AQUATIC COMMUNITIES AS THEY ARE AFFECTED BY THEIR PHYSICAL, CHEMICAL, AND BIOTIC ENVIRONMENT. THE INFLUENCE OF MAN'S ACTIVITIES ON THESE SYSTEMS WILL BE THE FOCUS OF THE COURSE.
Prerequisite: BIOL 3428.
Co-requisite: SMTE 0091.

BIOL 4406 Immunology
4 Semester Credit Hours (4 Lecture Hours)
AN OVERVIEW OF IMMUNOLOGY WITH EMPHASIS ON CURRENT KNOWLEDGE OF THE IMMUNE SYSTEM. DETAILED EXAMINATION OF THE SPECIFIC CELLS, CYTOKINES, ANTIBODIES, AND MOLECULES THAT COMPRISE THE IMMUNE SYSTEM. LABORATORY EXERCISES DEMONSTRATE THE BASIC PRINCIPLES AND TECHNIQUES USED IN IMMUNOLOGIC STUDIES. CROSS LISTED WITH BIMS 4406.
Prerequisite: BIOL 2421.
Co-requisite: SMTE 0092.

BIOL 4408 Microbial Diversity and Ecology
4 Semester Credit Hours (4 Lecture Hours)
BIODIVERSITY AND ROLES OF MICROORGANISMS IN NATURAL ENVIRONMENTS. INTERACTIONS WITH OTHER MICRO- AND MACRO-ORGANISMS (HUMANS, ANIMALS AND PLANTS) AND WITH ABIOTIC FACTORS. UNIQUE ABILITIES OF MICROORGANISMS SUCH AS NITROGEN FIXATION AND ADAPTATION TO EXTREME ENVIRONMENTS.
Prerequisite: (BIOL 2421 or 4328).
Co-requisite: SMTE 0092.

BIOL 4410 Mammalogy
4 Semester Credit Hours (3 Lecture Hours, 3 Lab Hours)
SYSTEMATICS AND ECOLOGY OF MAMMALS.
Prerequisite: BIOL 1407.
Co-requisite: SMTE 0091.

BIOL 4411 Animal Behavior
4 Semester Credit Hours (3 Lecture Hours, 3 Lab Hours)
AN UNDERSTANDING OF WHY ANIMALS BEHAVE IN THE MANNER THEY DO, THROUGH EXAMINATION OF BOTH INVERTEBRATE AND VERTEBRATE SPECIES.
Prerequisite: BIOL 1407.
Co-requisite: SMTE 0091.

BIOL 4413 Entomology
4 Semester Credit Hours (4 Lecture Hours)
A BROAD OVERVIEW OF THE NATURAL HISTORY, CLASSIFICATION, PHYLOGENY, ECOLOGY, BEHAVIOR, DEVELOPMENT AND PHYSIOLOGY OF INSECTS AND THEIR KIN. THE LAB WILL INVOLVE FIELD WORK, COLLECTION AND CURATION. OFFERED SPRING EVEN YEARS.
Prerequisite: BIOL 3413.
Co-requisite: SMTE 0091.

BIOL 4417 Field Biology
4 Semester Credit Hours (1 Lecture Hour, 6 Lab Hours)
FIELD BIOLOGY IS A HANDS-ON COURSE DESIGNED TO TEACH STUDENTS KEY CONCEPTS BY IMMERSING THEM IN NATURE. TOPICS INCLUDE ADAPTATIONS OF PLANTS AND ANIMALS IN DIFFERENT HABITATS, FOOD WEB INTERACTIONS, AND HOW BIOTIC AND ABIOTIC FORCES INTERACT TO STRUCTURE NATURAL COMMUNITIES INCLUDING SPATIAL AND TEMPORAL VARIATION IN COMMUNITIES.
Prerequisite: BIOL 3428.
Co-requisite: SMTE 0091.

BIOL 4422 Plant Taxonomy
4 Semester Credit Hours (4 Lecture Hours)
PRINCIPLES AND PRACTICE IN THE CLASSIFICATION OF FLOWERING PLANTS. FIELD TRIPS ARE REQUIRED. OFFERED SPRING EVEN YEARS.
Prerequisite: BIOL 1407.
Co-requisite: SMTE 0091.

BIOL 4425 Ornithology
4 Semester Credit Hours (3 Lecture Hours, 3 Lab Hours)
SYSTEMATICS, ANATOMY, PHYSIOLOGY, ECOLOGY, BEHAVIOR, AND FIELD IDENTIFICATION OF BIRDS.
Prerequisite: BIOL 1407.
Co-requisite: SMTE 0091.

BIOL 4429 Marine Botany
4 Semester Credit Hours (4 Lecture Hours)
THE ECOLOGY OF MARINE PLANTS WITH EMPHASIS ON IDENTIFICATION, LIFE HISTORIES, AND ENVIRONMENTAL FACTORS OF DISTRIBUTION.
Prerequisite: BIOL 1407.
Co-requisite: SMTE 0091.

BIOL 4430 Marine Plankton
4 Semester Credit Hours (3 Lecture Hours, 3 Lab Hours)
IN THIS CLASS WE WILL INVESTIGATE THE SYSTEMATICS, DISTRIBUTION, AND ECOLOGY OF MAJOR MARINE PLANKTON GROUPS AND INTRODUCE MAJOR CONCEPTS IN BIOLOGICAL OCEANOGRAPHY. OFFERED IN SPRING OF ODD-NUMBERED YEARS.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 4433</td>
<td>Parasitology</td>
<td>4</td>
<td>BIOL 2421. Systematics, Evolution, Biology, and Ecology of Fishes. Laboratory identification of marine and freshwater fishes collected during field excursions. Prerequisite: BIOL 2421.</td>
</tr>
<tr>
<td>BIOL 4435</td>
<td>Biological Microtechniques</td>
<td>4</td>
<td>BIOL 1407 and CHEM 3411. Theory and techniques of processing specimens for histochecmetry and microscopic examination. Laboratory includes preparation of tissues and small specimens for analysis and display. Prerequisite: BIOL 1407 and CHEM 3411.</td>
</tr>
<tr>
<td>BIOL 4442</td>
<td>Herpetology</td>
<td>4</td>
<td>BIOL 1407. Systematics, Ecology, and Behavior of Amphibians and Reptiles. Offered Spring Odd Years. Prerequisite: BIOL 1407.</td>
</tr>
<tr>
<td>BIOL 4444</td>
<td>Estuarine Organisms</td>
<td>4</td>
<td>BIOL 3413. Systematics, Distribution, and Ecology of Estuarine macrofauna and macroflora. Weekend field trips and individual study required. Prerequisite: BIOL 3413.</td>
</tr>
<tr>
<td>BIOL 4446</td>
<td>Tropical Ecosystems & Conservation</td>
<td>4</td>
<td>BIOL 3428. Survey of the ecology and conservation issues of the major ecosystems in the tropics and field techniques used to study tropical forest ecology. Offered Fall Odd Years. Prerequisite: BIOL 3428.</td>
</tr>
<tr>
<td>BIOL 4452</td>
<td>Ecology and Evolution of Fishes</td>
<td>4</td>
<td>BIOL 4432. This course covers aspects of fish ecology from individual, population, community, and ecosystem levels. We discuss the role of the environment on fish physiology and behavior, food-web dynamics, community assembly and diversity, ecosystem interactions, and anthropogenic impacts on fishes with a focus on conservation. Prerequisite: BIOL 4432.</td>
</tr>
<tr>
<td>BIOL 4547</td>
<td>Marine Science Field Camp</td>
<td>5</td>
<td>BIOL 1407. Students learn techniques required to properly conduct marine science field research. Practical, hands-on experience is gained in a variety of topics including biotic and abiotic sample collection and processing, quantitative analysis of field data, evaluation of environmental factors, survival and distribution of living organisms, and the structure of biotic communities. Prerequisite: BIOL 1407.</td>
</tr>
<tr>
<td>BIOL 4590</td>
<td>Selected Topics</td>
<td>5</td>
<td>BIOL 1407. Systematics, Evolution, Biology, and Ecology of Fishes. Laboratory identification of marine and freshwater fishes collected during field excursions. Prerequisite: BIOL 1407.</td>
</tr>
<tr>
<td>BIOL 4609</td>
<td>Field and Sampling Techniques</td>
<td>3-9</td>
<td>BIOL 3428. The study of techniques required for proper field work in the biological sciences. The course includes ecological sampling methods, safety, logistics, equipment operation and maintenance and travel concerns. Prerequisite: BIOL 3428.</td>
</tr>
<tr>
<td>BIOL 4609</td>
<td>Field and Sampling Techniques</td>
<td>3-9</td>
<td>BIOL 3428. The study of techniques required for proper field work in the biological sciences. The course includes ecological sampling methods, safety, logistics, equipment operation and maintenance and travel concerns. Prerequisite: BIOL 3428.</td>
</tr>
</tbody>
</table>