FAST TRACK GEOLOGY, BS AND ENVIRONMENTAL SCIENCE, MS

Program Description
The university allows the opportunity for high-achieving students to count a select number of graduate credits toward their undergraduate degree and thereby obtain a graduate degree at an accelerated pace. Students interested in the Fast Track from Geology to Environmental Science must meet the following application criteria:

- Currently seeking a BS in Geology at A&M-Corpus Christi.
- Minimum of a 3.0 GPA in the last 60 SCH (and a 3.0 GPA in all science and math courses) at the time of Fast Track application.
- Classified as a Senior with successful completion of at least 90 SCH, including:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1411</td>
<td>General Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1412</td>
<td>General Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td>GEOL 1403</td>
<td>Physical Geology</td>
<td>4</td>
</tr>
<tr>
<td>GEOL 1404</td>
<td>Historical Geology</td>
<td>4</td>
</tr>
<tr>
<td>MATH 2413</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 1401</td>
<td>General Physics I</td>
<td>4</td>
</tr>
<tr>
<td>or PHYS 2425</td>
<td>University Physics I</td>
<td></td>
</tr>
<tr>
<td>PHYS 1402</td>
<td>General Physics II</td>
<td>4</td>
</tr>
<tr>
<td>or PHYS 2426</td>
<td>University Physics II</td>
<td></td>
</tr>
<tr>
<td>GEOL 3411</td>
<td>Mineralogy</td>
<td>4</td>
</tr>
</tbody>
</table>

Students accepted into the Fast Track program will be given permission to enroll in up to six hours of prescribed graduate courses during the last semester of undergraduate studies. The hours for these graduate courses will “double-count” toward both the undergraduate and graduate programs. The BS and MS degrees will be awarded sequentially (i.e., upon completion of each degree) and not simultaneously. Students will be allowed to continue enrollment in the graduate program upon successful completion of the undergraduate degree.

Admissions Requirements
Applicants must provide the following at the time of application:

- A completed application form. Application fees are waived for Fast Track applicants.
- Official transcripts of all college and university coursework.
- An essay of at least 300 words describing their educational and career interests, goals, and challenges.
- Three letters of evaluation from persons knowledgeable about their potential for success in graduate studies.
- Identify a faculty member willing to serve as their graduate advisor. Applicants will not be admitted to the program without a graduate advisor.
- Official GRE scores by the time the student is reclassified to MS.

No criterion is weighted more heavily than any other criterion. Applications received or completed after the deadline for admission during one semester may be considered for admission in the following semester at the applicant’s request. Applicants will be notified of the outcome of their application by email.

Academic Preparation
Students accepted to the degree program with insufficient background in science, computer science, mathematics, or communication skills will be required to take undergraduate or graduate prerequisite courses prescribed by their advisory committees. These courses may or may not apply towards the total required for the master's degree.

Fast Track Curriculum in the Senior Year
BS, Geology students accepted in the Fast Track will have up to six hours of undergraduate elective credit replaced with six hours of graduate credit during the final semester of the senior year. A Fast Track student, in consultation with the faculty adviser, will be able to substitute six hours of undergraduate courses from BIOL, CHEM, COSC, ESCI, GEOL, GISC, MATH, PHYS, or other disciplines as approved.

In place of the six hours of undergraduate courses, the student will take two of the following graduate courses instead:

- ESCI 5302 FEDERAL ENV LAWS AND REGULATNS (3 sch) or ESCI 5360 COASTAL MANAGMNT AND OCEAN LAW (3 sch) or BLAW 5330 Environmental Law and Policy (3 sch)
- GEOL 5490 Advanced Topics (4 sch)
- ESCI 5330 OIL SPILL MANAGEMENT (3 sch)
- ESCI 5370 HAZARDOUS WASTE TRTMNT TECHN (3 sch)
- ESCI 5596 DIRECTED INDEPENDENT STUDY (1-5 sch)
- GEOL 5596 Directed independent Study (1-5 sch)
- An approved graduate elective.

See the Graduate Catalog for a complete description of the degree requirements for the MS in Environmental Science.

Courses
GEOL 1303 Essentials of Geology
3 Semester Credit Hours (3 Lecture Hours)
One-semester introductory Earth science course for students majoring in a non-science subject area. Covers basic geologic material and concepts, such as minerals, rocks, the rock cycle, and plate tectonics theory. Origin, composition, and evolution of our planet, as well as the importance of geology in everyday life, including geologic resources, global change, earthquakes, and volcanism are examined. This course is not recommended for students majoring in Geology or Environmental Sciences. Course counts toward the natural science component of the Core Curriculum Program.

TCCNS: GEOL 1303

GEOL 1403 Physical Geology
4 Semester Credit Hours (4 Lecture Hours)
Introduction to the origin, classification, and composition of Earth materials. Study of internal and surface processes which shape and modify Earth. Laboratory studies of minerals and rocks, as well as topographic maps, geologic maps and geologic cross-sections.

Co-requisite: SMTE 0094.

TCCNS: GEOL 1403
GEOL 1404 Historical Geology
4 Semester Credit Hours (4 Lecture Hours)
Introduction to the origin and evolution of Earth and other planets. Changes in the form and distribution of Earth's continents and oceans, and succession of plants and animals through geologic time. Laboratory studies of fossils, geological maps, and the interpretation of ancient environments of rock formation.
Prerequisite: GEOL 1403 or 1303.
Co-requisite: SMTE 0094.
TCCNS: GEOL 1404

GEOL 2102 Undergraduate Seminar in Geology-Careers in the Geosciences
1 Semester Credit Hour (1 Lecture Hour)
Introductory level seminar featuring diverse topics and speakers. Focus on careers in the geosciences as well as on how to successfully plan a college career. In-house as well as external speakers. May not be repeated for credit but attendance in subsequent semesters is encouraged.

GEOL 2103 Undergraduate Seminar in Geology-Research in the Geosciences
1 Semester Credit Hour (1 Lecture Hour)
Introductory level seminar featuring diverse topics and speakers. Focus on current geologic research. In-house as well as external speakers. May not be repeated for credit but attendance in subsequent semesters is highly encouraged. Credit/no credit

GEOL 2222 Karst Geology and Paleoclimatology
2 Semester Credit Hours (1 Lecture Hour, 2 Lab Hours)
This course describes the different types of caves and karst rocks, the water rock interactions in carbonate rock systems, and it explains cave formation via hydrological and geochemical processes. It also deals with how speleothem proxies such as oxygen and carbon stable isotope, trace elements, carbonate petrography are used to decipher past changes in climate.

GEOL 2490 Selected Topics
1-4 Semester Credit Hours (1-4 Lecture Hours, 6 Lab Hours)
May be repeated for credit if topics are significantly different. Subject material variable. Faculty approval required.

GEOL 3326 Introduction to Geological Field Methods
3 Semester Credit Hours (3 Lecture Hours)
Introduction to the basic techniques of geological fieldwork. Note taking in the field, proper use of geological field equipment, measurement and description of rock sections by several methods and degrees of detail, plus small area mapping of several types of terrain with topographic maps. Reports, sections, and maps will be produced from the field notes. Field trips required.
Prerequisite: GEOL 1403 and 1404 and (GEOL 3411 or 3411*).
* May be taken concurrently.
Co-requisite: SMTE 0094.

GEOL 3329 Geology of National Parks
3 Semester Credit Hours (3 Lecture Hours)
Introduction to the regional geology of the United States using selected U.S. National Parks representing a wide variety of geologic settings as examples. Application of major geologic principles and basic geologic concepts such as plate tectonics, rock cycle, stratigraphy, and geologic time.
Prerequisite: GEOL 1303, 1403 or 1404.

GEOL 3411 Mineralogy
4 Semester Credit Hours (4 Lecture Hours)
Study of the physical and chemical properties of minerals. Introduction to the crystallography of minerals, optical mineralogy, and the use of the polarized light microscope. Laboratory study of mineral identification in hand specimens and thin sections.
Prerequisite: GEOL 1403 and CHEM 1411 and (CHEM 1412 or 1412*).
* May be taken concurrently.
Co-requisite: SMTE 0094.

GEOL 3414 IGNEOUS AND METAMORPHIC PETROLOGY
4 Semester Credit Hours (3 Lecture Hours, 2 Lab Hours)
Genesis and occurrence of igneous and metamorphic rocks. Mineralogical composition and thermodynamics of geologic systems. Determination of rock types in hand specimens and thin sections.
Prerequisite: GEOL 1403, CHEM 1411, 1412 and GEOL 3411.
Co-requisite: SMTE 0094.

GEOL 3441 Invertebrate Paleontology
4 Semester Credit Hours (4 Lecture Hours)
Morphology, classification, and paleoecology of fossil invertebrates. Applications to marine geology including paleoceanography, stratigraphy, economic geology. Field trip to Texas invertebrate fossil beds.
Prerequisite: GEOL 1404.
Co-requisite: SMTE 0094.

GEOL 3442 Geomorphology
4 Semester Credit Hours (3 Lecture Hours, 2 Lab Hours)
Study of landscapes and landforms at the surface of the Earth, and the processes and mechanisms by which they are developed.
Prerequisite: GEOL 1403.
Co-requisite: SMTE 0094.

GEOL 3443 Environmental Geology
4 Semester Credit Hours (4 Lecture Hours)
Study of the relationships of humans to Earth's physical environment. Geologic aspects of waste disposal, resources, conservation, land reclamation, geologic hazards, and land-use planning.
Prerequisite: GEOL 1403.
Co-requisite: SMTE 0094.

GEOL 3490 Selected Topics
1-4 Semester Credit Hours (1-4 Lecture Hours)
May be repeated for credit if topics are significantly different. Subject materials variable.

GEOL 4050 Geology Field Safety Seminar
0 Semester Credit Hours
Restricted to geology majors attending field camp. Students required to meet with geology program coordinator prior to registration for this course.

GEOL 4311 Paleoclimatology
3 Semester Credit Hours (3 Lecture Hours)
Reconstruction of Earth's climate system through time using natural archives and proxy evidence. Focus is mostly towards the Quaternary, though longer time spans will be considered, too. Mixed format with lectures, hand-on activities involving paleoclimate data sets, and seminar-style readings and discussions.
Prerequisite: GEOL 1404 and 3411.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Description</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOL 4316</td>
<td>Marine Geoscience</td>
<td>3</td>
<td>Introduction to the geology of the marine environment. Review of plate tectonic processes relevant</td>
<td>GEOL 1403, 1404, CHEM 1411 and 1412.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>to the evolution of continental margins and plate boundaries; geophysics and ocean morphology; geology</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>of ocean crust; controls on the types, origin, and distribution of marine sediments; marine geochemistry; nearshore</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>geological processes and the continental shelf; introduction to paleoceanography; global paleoceanographic</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>evolution; critical events in ocean history. Special focus on the Gulf of Mexico.</td>
<td></td>
</tr>
<tr>
<td>GEOL 4321</td>
<td>Introduction to Soil and Groundwater Restoration</td>
<td>3</td>
<td>Introduction to methods for restoring contaminated soil and groundwater by examining the factors and</td>
<td>GEOL 1403, 1404, CHEM 1411 and 1412.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>processes influencing the efficacy of remediation systems. An emphasis will be placed on the scientific</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>principles upon which soil and groundwater remediation is based.</td>
<td></td>
</tr>
<tr>
<td>GEOL 4326</td>
<td>Field Seminar in Geology</td>
<td>3</td>
<td>Designed to prepare students for summer field camp. Basic techniques of geologic mapping in the field,</td>
<td>GEOL 4111 and 4241.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>data analysis and interpretation, and report writing.</td>
<td></td>
</tr>
<tr>
<td>GEOL 4411</td>
<td>Sedimentation and Stratigraphy</td>
<td>3</td>
<td>Composition and origin of sediments and sedimentary rocks. Description and classification of rocks</td>
<td>GEOL 1403 and (GEOL 1404) and (GEOL 3411*).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>in hand specimen. Principles of stratigraphy, including stratigraphic units and correlation. Facies</td>
<td>May be taken concurrently.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>models for major depositional systems. Field trips.</td>
<td></td>
</tr>
<tr>
<td>GEOL 4415</td>
<td>Economic Geology</td>
<td>4</td>
<td>Study of geologic and tectonic parameters of mineral and metals formation. Ore geology and geochemistry</td>
<td>GEOL 1403 and 3411.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mining, processing, fabrication, and marketing of natural resources. Field trip to mining operations.</td>
<td></td>
</tr>
<tr>
<td>GEOL 4416</td>
<td>Introduction to Geochemistry</td>
<td>4</td>
<td>Introductory study of the Earth processes using principles of chemical equilibrium, thermodynamics,</td>
<td>CHEM 1411, 1412, MATH 2413 and GEOL 3411.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>isotope geochemistry and organic geochemistry. Applications of low-temperature geochemistry to geologic</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>problems.</td>
<td></td>
</tr>
<tr>
<td>GEOL 4421</td>
<td>Structural Geology</td>
<td>4</td>
<td>Geologic and quantitative description of deformation of the Earth's crust, mechanics of brittle and</td>
<td>GEOL 4111 or 4411*.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>crystal-plastic deformation processes of Earth materials, introduction to continuum mechanics of</td>
<td>May be taken concurrently.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>geologic systems, crustal deformation from micro-scale to global tectonics. Laboratory introduces</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>principles of three-dimensional data representation and analysis, geologic map interpretation,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cross-section techniques, and problems in stress and strain analysis.</td>
<td></td>
</tr>
<tr>
<td>GEOL 4422</td>
<td>Geophysics</td>
<td>4</td>
<td>Introduction to quantitative techniques to assess physical properties and processes of the Earth.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Topics include earthquake seismology, refraction and reflection seismology, gravimetry, magnetism,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>electrical methods, and radioactivity of Earth materials. Application of geophysical methods</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>to the study of the Earth, in oil and gas exploration, and in economic and environmental geology.</td>
<td></td>
</tr>
<tr>
<td>GEOL 4423</td>
<td>Seismic Methods</td>
<td>4</td>
<td>Introduction to the acquisition, processing, and interpretation of 2D and 3D seismic data. Lectures</td>
<td>GEOL 1401 or 2425 and (PHYS 1402 or 2426) and (MATH 2413).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>and field exercises are covered. Topics include conceptual and historical foundations of modern</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>reflection seismology; an overview of seismic wave phenomena in acoustic, elastic, and porous media;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>acquisition principles for land and marine seismic surveys; methods used to create 2D and 3D</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>seismic images from field data; concepts of dip moveout, prestack migration, and depth migration;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>concepts and limitations of 3D seismic interpretation for structure, stratigraphy, and rock</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>property estimation; and the interpretation role of attributes, impedance estimation, and AVO.</td>
<td></td>
</tr>
<tr>
<td>GEOL 4424</td>
<td>Environmental and Engineering Geophysics</td>
<td>4</td>
<td>Geophysical techniques for exploring the shallow subsurface for environmental and engineering</td>
<td>(PHYS 1401 or 2425) and (PHYS 1402 or 2426) and (MATH 2413).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>purposes. Topics include seismic, resistivity, ground penetrating radar, electromagnetic, gravity,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>and magnetic methods. This course includes both lectures and labs (field exercises) components.</td>
<td></td>
</tr>
<tr>
<td>GEOL 4430</td>
<td>Internship in Geology</td>
<td>1-4</td>
<td>One to four semester hours of credit may be earned by working in an internship position in industry,</td>
<td>(PHYS 1401 or 2425) and (PHYS 1402 or 2426) and (MATH 2413).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>with local government, a private firm, or an independent geologist.</td>
<td></td>
</tr>
<tr>
<td>GEOL 4436</td>
<td>Introduction to Petroleum Geology</td>
<td>4</td>
<td>Basic concepts of petroleum geology and techniques used in the exploration and production of</td>
<td>GEOL 4111 or 4411*.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>hydrocarbon systems. Lectures and lab exercises will cover principles of stratigraphy, sedimentology,</td>
<td>May be taken concurrently.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>hydrocarbon generation, hydrocarbon-trapping mechanisms, reservoir characterization, seismic</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>interpretation, well-log interpretation, and geologic risk analysis.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
GEOL 4444 Hydrogeology
4 Semester Credit Hours (4 Lecture Hours)
Introduction to the fundamentals of groundwater and surface water flow; well hydraulics and evaluation of groundwater as a resource; chemical properties of groundwater and groundwater contamination; groundwater and the environment; and groundwater modeling. This course also examines some of the techniques associated with field hydrogeology and laboratory methods in hydrogeology.
Prerequisite: GEOL 1403 and MATH 2413 and (PHYS 1401 or 2425).
Co-requisite: SMTE 0094.

GEOL 4490 Selected Topics
4 Semester Credit Hours (1-4 Lecture Hours, 1-4 Lab Hours)
May be repeated for credit if topics are significantly different. Subject materials variable.

GEOL 4496 Directed Independent Study
1-4 Semester Credit Hours
DIRECTED INDEPENDENT STUDY Requires a formal proposal of study to be completed in advance of registration and to be approved by the supervising faculty, the chairperson, and the Dean of the College.

GEOL 4649 Karst of the Yucatan Peninsula
6 Semester Credit Hours (3 Lecture Hours)
This course describes the different types of caves and karst rocks, the water rock interactions in carbonate rock systems, and it explains cave formation via hydrogeological and geochemical processes. It offers field work experience such as sample collection, determining field parameters, karst and cave surveys, measuring spring discharges in the Yucatan Peninsula of Mexico and laboratory experience on the Texas A&M University-Corpus Christi campus.
Prerequisite: (GEOL 1403 and 4411) or GEOL 4444, 4416 or 4311.

GEOL 4650 Field Geology
6 Semester Credit Hours (12 Lab Hours)
Field course involving practical application of geologic principles to field problems. Locations visited and material covered depends on hosting institution. Generally should include: mapping and outcrop data collection; measurement of stratigraphic sections; mapping and preparation of geologic cross-sections; preparation of geologic reports.
Prerequisite: GEOL 3326, 3414, 3441, 4411 and 4421.
Co-requisite: SMTE 0094.

GEOL 5101 Geology Seminar
1 Semester Credit Hour (1 Lecture Hour)
An examination of concepts and theories in geology and their linkages to other disciplines such as environmental science, computer science, geographic information science, and education. Seminar themes may vary from year to year. May be repeated for credit but credit may be applied only once towards degree.

GEOL 5308 Coastal Geoenvironments and Change
3 Semester Credit Hours (3 Lecture Hours)
Investigations of the origin, character, and processes of coastal geoenvironments with an emphasis on tracking historical and projecting future changes. Involves examination of the interactions of geological and biological processes and impacts of human activities on coastal depositional systems. Includes applications of remote sensing, ground studies, and GIS for mapping geoenvironments and analyzing change. Readings in current literature, day field trips, and a project.

GEOL 5321 Advanced Soil and Groundwater Restoration
3 Semester Credit Hours (3 Lecture Hours)
Advanced study of methods for restoring contaminated soil and groundwater by examining the factors and processes influencing the efficacy of remediation systems. An emphasis will be placed on the scientific principles upon which soil and groundwater remediation is based.

GEOL 5322 Advanced Geophysical Techniques Seminar
3 Semester Credit Hours (3 Lecture Hours)
This graduate-level course is for coastal and marine system science and environmental science majors and professional petroleum geologists who would like a better understanding of advanced geophysical techniques and principles available to geoscientist working subsurface problems. The course will consist of an examination of current topics, techniques, and software. New techniques and topics will be presented by geology staff and visiting experts working in those fields.
Prerequisite: GEOL 4411 and 4322.

GEOL 5336 Groundwater Geochemistry
3 Semester Credit Hours (3 Lecture Hours)
Principles of the geochemistry of groundwater including chemical thermodynamics. Characterization of the chemistry of natural and contaminated groundwater. Chemical measurements, analyses, and calculations. Includes readings in current literature and research on a selected topic.
Prerequisite: GEOL 4444.

GEOL 5437 Computer Applications and Modeling in Hydrogeology
4 Semester Credit Hours (4 Lecture Hours)
Principles of analytical and numerical modeling in hydrogeology. Use of available software for aquifer test solutions, aquifer simulation modeling, and mass transport. Completion of modeling projects. Includes readings in current literature.
Prerequisite: GEOL 4444.
Co-requisite: SMTE 0094.

GEOL 5438 Mass Transport Modeling in Hydrogeology
4 Semester Credit Hours (4 Lecture Hours)
Principles of numerical modeling of mass transport in groundwater systems. Use of software and computer systems for numerical simulations. Laboratory time devoted to completion of modeling projects. Includes readings in current literature.
Prerequisite: GEOL 6437.

GEOL 5490 Advanced Topics
4 Semester Credit Hours (1-4 Lecture Hours, 1-4 Lab Hours)
Subject varies. Advanced topics including current literature research. May be repeated for credit when topics are sufficiently different.

GEOL 5596 Directed Independent Study
1-5 Semester Credit Hours
Study in areas of current interest.

GEOL 6321 Advanced Soil and Groundwater Restoration
3 Semester Credit Hours (3 Lecture Hours)
Advanced study of methods for restoring contaminated soil and groundwater by examining the factors and processes influencing the efficacy of remediation systems. An emphasis will be placed on the scientific principles upon which soil and groundwater remediation is based. Cross listed with ESCI 6321.
GEOL 6416 Advanced Geochemistry
4 Semester Credit Hours (4 Lecture Hours)
Advanced study of the Earth processes using principles of chemical equilibrium, thermodynamics, isotope geochemistry and organic geochemistry. Applications of low-temperature geochemistry to geologic problems.
Prerequisite: CHEM 1311 and 1111 and (CHEM 1312 or 1112) and MATH 2413 and GEOL 3414.

GEOL 6422 Advanced Geophysics
4 Semester Credit Hours (3 Lecture Hours, 2 Lab Hours)
Advanced techniques to assess physical properties and processes of the Earth. Topics include earthquake seismology, refraction and reflection seismology, gravimetry, magnetism, electrical methods, and radioactivity of Earth materials. Application of geophysical methods to the study of the Earth, in oil and gas exploration, and in economic and environmental geology.
Prerequisite: (GEOL 4421, PHYS 1401 or 2425) or (PHYS 1402 or 2426) and (MATH 2413).

GEOL 6423 Advanced Seismic Methods
4 Semester Credit Hours (3 Lecture Hours, 2 Lab Hours)
Advanced methods for the acquisition, processing, and interpretation of 2D and 3D seismic data. Lectures and field exercises are covered. Topics include conceptual and historical foundations of modern reflection seismology; an overview of seismic wave phenomena in acoustic, elastic, and porous media; acquisition principles for land and marine seismic surveys; methods used to create 2D and 3D seismic images from field data; concepts of dip moveout, prestack migration, and depth migration; concepts and limitations of 3D seismic interpretation for structure, stratigraphy, and rock property estimation; and the interpretation role of attributes, impedance estimation, and AVO.
Prerequisite: GEOL 4322.

GEOL 6424 Advanced Environmental and Engineering Geophysics
4 Semester Credit Hours (3 Lecture Hours, 2 Lab Hours)
Advanced geophysical techniques for exploring the shallow subsurface for environmental and engineering purposes. Topics include seismic, resistivity, ground penetrating radar, electromagnetic, gravity, and magnetic methods. This course includes both lectures and labs (field exercises) components.
Prerequisite: (PHYS 1401 or 2425) and (PHYS 1402 or 2426) and (MATH 2413).

GEOL 6436 Principles of Petroleum Geology
4 Semester Credit Hours (4 Lecture Hours)
Advanced concepts of petroleum geology and techniques used in the exploration and production of hydrocarbon systems. Lectures will cover principles of stratigraphy, sedimentology, hydrocarbon generation, hydrocarbon-trapping mechanisms, reservoir characterization, seismic interpretation, well-log interpretation, and geologic risk analysis.
Prerequisite: GEOL 4411.

GEOL 6444 Advanced Hydrogeology
4 Semester Credit Hours (3 Lecture Hours, 2 Lab Hours)
Advanced study of hydrogeology concepts necessary to understand and question the hydrologic cycle, and specifically, surface water flow; groundwater flow; groundwater-surface water interaction; groundwater sources, occurrence, movement, contamination, and resources; and environmental topics of interest related to water resources.
Prerequisite: CHEM 1311 and 1111 and (CHEM 1312 or 1112) and MATH 2413 and GEOL 3414.