BIOLOGY, BS

Program Description

Purpose of Biology Program
The biology program provides diverse training for careers in the biological sciences. The biology curriculum includes content courses required for

1. teacher certification in life science,
2. acceptance to postgraduate studies, and
3. pre-professional studies in preparation for admission to professional schools.

Students will acquire content and skills to enter a variety of biology-related careers such as research, marine biology, wildlife and coastal management, environmental protection, laboratory technician, biotechnology industry, medical or environmental microbiology, technical writing, pharmaceutical sales, careers in the medical, dental, and allied health fields, and science education.

Field and laboratory courses emphasize the development of practical skills in using special materials and equipment. Focus is on enhancement of critical thinking skills, which will prepare the student for careers in the biological sciences as well as in other general areas of employment.

Student Learning Outcomes

Students will:

• Possess a broad understanding of biology.
• Understand the scientific method and use it to develop and conduct biological experiments.
• Have the skills necessary to successfully communicate biological information to a range of audiences.

The Honors Program

The Honors Program (admission by application only) offers highly motivated students from any academic discipline an enriched program of study in which to develop global perspectives. Appropriate courses approved by both a student’s Biology faculty mentor and Honors advisor may count toward the Biology degree. Thus, a Biology student in the Honors track can usually graduate with no additional course work. For more information, consult the section entitled "Honors Program (http://catalog.tamucc.edu/undergraduate/university-college/programs/honors-program/”).

Fast Track from Bachelor’s to Master’s Degree

The university allows the opportunity for high-achieving students to count a select number of graduate credits toward their undergraduate degree and thereby obtain a graduate degree at an accelerated pace. For more information, see Fast Track Biology, BS to Biology, MS (http://catalog.tamucc.edu/undergraduate/science-engineering/fast-track/fast-track-biology-bs-ms/).

General Requirements

The Bachelor of Science in Biology degree requires a minimum of 120 semester credit hours: 42 are designated University Core Curriculum Program courses, 43 are from biology core courses and 35 are from biology career track courses. The biology core provides students with a broad biological background and includes coursework in four key areas: mathematics, the chemistry of life/cell biology, form and function, and organismal biology. In each of these areas students select one course from a list of appropriate courses, depending on their interests and choice of biology career track. The biology career track areas are: (A) Ecology, (B) Marine Biology, (C) Cell/Molecular Biology, (D) Microbiology, (E) Organismal Biology and (F) Integrative Biology. Students should select a biology career track as soon as possible after they complete their freshman year and well before they begin their junior year.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNIV 1101</td>
<td>First-Year Seminar I</td>
<td>1</td>
</tr>
<tr>
<td>UNIV 1102</td>
<td>First-Year Seminar II</td>
<td>1</td>
</tr>
<tr>
<td>Core Curriculum Program</td>
<td></td>
<td>42</td>
</tr>
<tr>
<td>University Core Curriculum</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Biology majors are required to take:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL 1406</td>
<td>Biology I</td>
<td></td>
</tr>
<tr>
<td>BIOL 1407</td>
<td>Biology II</td>
<td></td>
</tr>
<tr>
<td>MATH 2413</td>
<td>Calculus I</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 1411</td>
<td>General Chemistry I</td>
<td></td>
</tr>
<tr>
<td>Biology Core Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL 1406</td>
<td>Biology I (included in University Core)</td>
<td></td>
</tr>
<tr>
<td>BIOL 1407</td>
<td>Biology II (included in University Core)</td>
<td></td>
</tr>
<tr>
<td>BIOL 2300</td>
<td>Science Communication</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 2416</td>
<td>Genetics</td>
<td>4</td>
</tr>
</tbody>
</table>
Total Hours: 125

1. For 4 of the four-hour science and mathematics courses that are required for all Biology students, some or all of the hours may be counted as part of the University Core requirement. For BIOL 1406 Biology I (4 sch), BIOL 1407 Biology II (4 sch), and MATH 2413 Calculus I (4 sch), the 3 lecture hours of each will be counted in the Life and Physical Sciences or Mathematics Foundational Areas; and each one-hour laboratory component will be counted in the Component Area Option of the University Core Curriculum.

2. Students who are not eligible to enroll in MATH 2413 Calculus I (4 sch) will need to take additional prerequisite courses (3-9 sem. hrs.) depending on their math placement level (i.e., MATH 0300 Developmental Mathematics (3 sch), MATH 1314 College Algebra (3 sch) and MATH 1316 Trigonometry (3 sch), or MATH 2312 Precalculus (3 sch)).

3. For CHEM 1411 General Chemistry I (4 sch), the 3 lecture hours will be counted in the Component Area Option of the University Core Curriculum, but the 1 laboratory hour will be counted as part of the Biology Core.

* Online offering
^ Blended offering

Note:
Students must complete 34-35 additional hours in one of the Biology Tracks to earn the 120 hours necessary for graduation. A minimum of 45 hours of upper-division credit (courses numbered 3000 or 4000) is required to graduate. A minimum grade point average of 2.5 in the major field of study (biology core + biology track) is required to graduate. No “D” or “F” grades will be accepted as credit within the biology core or biology track courses.

Biology Career Tracks

Each biology career track is designed to provide specific background in a biological discipline. The integrative biology track provides a broad background in the biological sciences.

Any track will prepare a student for entry-level biological careers in a variety of academic, governmental, or private sector settings, but many careers will require training beyond the BS degree. A students should consult their faculty mentor to determine the track that is the best fit for their career goals.

Each track consists of 34-35 hours, including a core of required courses and electives. Students are strongly encouraged to consult their faculty mentor for guidance in choosing the electives.

Ecology Track
The Ecology Track focuses on interactions between organisms and between organisms and the physical environment. Students choosing this track will be preparing for careers in fields such as agriculture, environmental protection, conservation, natural resource management, and public education.

A total of at least 120 hours is required to graduate with the B.S. degree.

Code	**Title**	**Hours**
Biology Core Courses
BIOI 3479 | Plant Ecology | 8
BIOI 4405 | Limnology |
BIOI 4408 | Microbial Diversity and Ecology |
BIOI 4336 | Marine Ecology |
BIOI 4446 | Tropical Ecosystems & Conservation |
Ecology Electives
Select 27 hours of upper division electives (p. 4) | 27
Total Hours | 35

Marine Biology Track
The Marine Biology track focuses on organisms in marine and coastal systems. Students choosing this track will be preparing for careers in fisheries and aquaculture, coastal/marine resource management and conservation, outdoor recreation, and aquatic science.

A total of at least 120 hours is required to graduate with the B.S. degree.

Code	**Title**	**Hours**
Marine Biology Core Courses
BIOI 4336 | Marine Ecology | 3
Select three of the following Marine Organisms courses: | 12
BIOI 4429 | Marine Botany |
BIOI 4430 | Marine Plankton |
BIOI 4432 | Ichthyology |
A total of at least 120 hours is required to graduate with the B.S. degree.

Microbiology Track
This Microbiology track focuses on bacteria, viruses, fungi and protozoa. Many of these organisms are important to industry, agriculture, and health care. Students choosing this track will be preparing for careers in industrial, environmental, medical, public health, and agricultural laboratories, industrial quality control, health care professions, research, biotechnology, and microbiology-related sales.

A total of at least 120 hours is required to graduate with the B.S. degree.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 3403</td>
<td>Molecular Biology (include in the Biology Core)</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 4406</td>
<td>Immunology</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 2472</td>
<td>Cell Biology</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 3345</td>
<td>Plant Ecology</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 4422</td>
<td>Plant Taxonomy</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 3413</td>
<td>Invertebrate Zoology (include in Biology Core)</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 3414</td>
<td>Vertebrate Zoology</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 4411</td>
<td>Animal Behavior</td>
<td>4</td>
</tr>
</tbody>
</table>

Select one of the following (include in Biology Core):
- BIOL 3425 Functional Anatomy
- or BIOL 3430 Physiology

Organismal Biology Track
The Organismal Biology track focuses on the natural history, ecology, structure, and function of plants and/or animals. Students can choose to emphasize plants or animals, or take courses that result in a broad understanding of both. Students choosing this track will be preparing for careers that include, but are not limited to, wildlife management, fisheries, natural resource management, parks and recreation, biodiversity and conservation, habitat restoration, and agriculture or horticulture. This track also prepares students for graduate studies in biology, wildlife and fisheries sciences, wildlife management, forestry, or taxonomy and systematics.

A total of at least 120 hours is required to graduate with the B.S. degree.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 2472</td>
<td>Principles of Botany (include in Biology Core)</td>
<td>8</td>
</tr>
<tr>
<td>BIOL 3345</td>
<td>Cell Physiology (include in Biology Core)</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 3479</td>
<td>Plant Ecology</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 4422</td>
<td>Plant Taxonomy</td>
<td>4</td>
</tr>
</tbody>
</table>

Select 8 hours from the following:
- BIOL 3413 Invertebrate Zoology (include in Biology Core)
- BIOL 3414 Vertebrate Zoology
- BIOL 4411 Animal Behavior

Cell/Molecular Biology Track
The Cell/Molecular Biology track focuses on the chemical, cellular, and tissue levels of biological organization. Students choosing this track will be preparing for careers in biotechnology and healthcare professions, research laboratories, biological/pharmaceutical manufacturing and quality control, agricultural testing, and health- or biotechnology-related sales. This track also prepares students for graduate studies in biology, biotechnology and health-related sciences.

A total of at least 120 hours is required to graduate with the B.S. degree.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 3403</td>
<td>Molecular Biology (include in the Biology Core)</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 4410</td>
<td>Cell Biology</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 4340</td>
<td>Genomics, Proteomics and Bioinformatics</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 4401</td>
<td>Biochemistry I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 4402</td>
<td>Biochemistry II</td>
<td>4</td>
</tr>
</tbody>
</table>

Select 20 hours of upper division electives (p. 4)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 3425</td>
<td>Functional Anatomy</td>
<td>4</td>
</tr>
<tr>
<td>or BIOL 3430 Physiology</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>
Students choosing this emphasis should take one 4 sem. hour course from the Animal Emphasis and one 4 sem. hour course from the Plant Emphasis, including any Biology Core course listed in either Plant or Animal emphasis that was not taken to fulfill Biology Core requirements.

Organismal Biology Electives
Select 27 hours of upper division electives (p. 4) 27
Total Hours 35

^ Blended offering

Integrative Biology Track
The Integrative Biology track emphasizes the integration of physical factors, cells, tissues, organs, and organ systems in producing functional organisms. Students choosing this track will be preparing for careers in health care, government or academic research, agriculture, or biology sales. This track is also a good choice for students planning to attend graduate school because it provides a great deal of flexibility depending on the student’s interests and career goals.

A total of at least 120 hours is required to graduate with the B.S. degree.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 3410</td>
<td>Cell Biology (include in Biology Core)</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 3425</td>
<td>Functional Anatomy (include in Biology Core)</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 3430</td>
<td>Physiology</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 1401</td>
<td>General Physics I</td>
<td>4</td>
</tr>
<tr>
<td>& PHYS 1402</td>
<td>and General Physics II</td>
<td></td>
</tr>
<tr>
<td>PHYS 2425</td>
<td>University Physics I</td>
<td>4</td>
</tr>
<tr>
<td>& PHYS 2426</td>
<td>and University Physics II</td>
<td></td>
</tr>
</tbody>
</table>

Integrative Biology Electives
Select 23 hours of upper division electives (p. 4) 23
Total Hours 35

Approved Electives
BIOL 2472 Principles of Botany (4 sch), or any 3000- or 4000-level Biology course (except BIOL 3471 (sch) and BIOL 3472 (sch)) can be taken for elective credit. In addition to upper-division Biology (BIOL prefix) courses, students may select courses from the list below. Note that approval of a faculty mentor is required for certain courses (BIOL 4590 Selected Topics (5 sch) or BIOL 4396 Directed Independent Study (1-3 sch)). Up to 4 semester hours of science electives not on this list can be taken with mentor approval.

List of Electives
Any upper division Biology course (BIOL 3XXX or 4XXX) may be taken as an elective. The upper division Biomedical (BIMS) courses that are listed below may be taken as electives for the BS Biology degree without seeking approval. The lower division courses listed may be taken as electives, but no more than 8 hours will be counted toward the degree, and students should be cognizant of the 45-hour minimum of upper division coursework that is required to graduate. Upper division coursework from other science disciplines (e.g., Environmental Science) may be taken with approval, but no more than 8 hours will be counted toward the degree.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIMS 3401</td>
<td>Pathophysiology</td>
<td>4</td>
</tr>
<tr>
<td>BIMS 4311</td>
<td>Biology of Cancer</td>
<td>3</td>
</tr>
<tr>
<td>BIMS 4323</td>
<td>Neurobiology</td>
<td>3</td>
</tr>
<tr>
<td>BIMS 4327</td>
<td>Introduction to Toxicology</td>
<td>3</td>
</tr>
<tr>
<td>BIMS 4330</td>
<td>Biological Basis of Aging</td>
<td>3</td>
</tr>
<tr>
<td>BIMS 4333</td>
<td>Medical Entomology</td>
<td>3</td>
</tr>
<tr>
<td>BIMS 4334</td>
<td>Human Genetics</td>
<td>3</td>
</tr>
<tr>
<td>BIMS 4335</td>
<td>Endocrinology</td>
<td>3</td>
</tr>
<tr>
<td>BIMS 4374</td>
<td>Medical Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>BIMS 4375</td>
<td>Mechanisms of Microbial Pathogenesis</td>
<td>3</td>
</tr>
<tr>
<td>BIMS 4410</td>
<td>Histology</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 1401</td>
<td>General Physics I</td>
<td>4</td>
</tr>
<tr>
<td>or PHYS 2425</td>
<td>University Physics I</td>
<td></td>
</tr>
<tr>
<td>PHYS 1402</td>
<td>General Physics II</td>
<td>4</td>
</tr>
<tr>
<td>or PHYS 2426</td>
<td>University Physics II</td>
<td></td>
</tr>
<tr>
<td>MATH 2414</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 3342</td>
<td>Applied Probability and Statistics</td>
<td>3</td>
</tr>
</tbody>
</table>

* Online offering
^ Blended offering

Courses

BIOL 1308 Science for Life I (Non-Majors Biology)
3 Semester Credit Hours (3 Lecture Hours, 3 Lab Hours)
A non-majors science course in which students will learn basic biological principles, identify the relevance of science in everyday life, and will understand the scientific method. Hands-on lab activities will reinforce course concepts. This course does not substitute for BIOL 1406 - Biology I or BIOL 1407 - Biology II for science majors.
Co-requisite: SMTE 0091.
TCCNS: BIOL 1308

BIOL 1406 Biology I
4 Semester Credit Hours (3 Lecture Hours, 2 Lab Hours)
Presentation of basic biological concepts including scientific method, cytology, energetics, nucleic acids and genetics. This course is suitable for all majors.
Prerequisite: (MATH 1314, 1316, 2305, 2413, minimum score of 21 in ‘ACT Math’ or minimum score of 550 in ‘SAT Math”).
Co-requisite: SMTE 0091.
TCCNS: BIOL 1406

BIOL 1407 Biology II
4 Semester Credit Hours (4 Lecture Hours)
This course is an overview of the major concepts in biological diversity and plant and animal biology. Laboratory work will include individual/ team activities as well as technology-related assignments.
Prerequisite: BIOL 1406.
Co-requisite: SMTE 0091.
TCCNS: BIOL 1407
BIOL 2300 Science Communication
4 Semester Credit Hours (3 Lecture Hours)
This course involves presentation and discussion of selected topics relating to the professional skills of practicing biological scientists, including basic software instruction, a review of library services pertinent to science, the application of scientific literature research skills, hypothesis generation and statistical tests, critical reviews of scientific articles, and an introduction to ethical issues in science.

BIOL 2371 Principles of Evolution
3 Semester Credit Hours (3 Lecture Hours)
An overview of the mechanisms by which heritable information changes, adaptations develop, and species diversify. Provides a foundation for molecular, cellular, and organismal studies in the biological sciences.
Prerequisite: BIOL 1407.
Co-requisite: SMTE 0091.

BIOL 2401 Anatomy and Physiology I
4 Semester Credit Hours (4 Lecture Hours)
Structure and function of the human body emphasizing biological chemistry, cell biology, tissues, and the integumentary, skeletal, muscular, and nervous systems. Not recommended for majors in the College of Science and Engineering. To count this course toward a major in the Department of Life Sciences, a student must demonstrate that it is required by professional schools in his or her career track and obtain approval for a substitution from his or her faculty mentor. Students may not receive credit for both this course and either BIOL 3425 - Functional Anatomy or BIOL 3430 - Physiology.
Co-requisite: SMTE 0091.
TCCNS: BIOL 2401

BIOL 2402 Anatomy and Physiology II
4 Semester Credit Hours (4 Lecture Hours)
Structure and function of the human body emphasizing blood, growth, development, genetics, and the endocrine, digestive, respiratory, cardiovascular, lymphatic, immune and urogenital systems. Not recommended for majors in the College of Science and Engineering. To count this course toward a major in the Department of Life Sciences, a student must demonstrate that is is required by professional schools in his or her career track and obtain approval for a substitution from his or her faculty mentor. Students may not receive credit for both this course and either BIOL 3425 - Functional Anatomy or BIOL 3430 - Physiology.
Prerequisite: BIOL 2401.
Co-requisite: SMTE 0091.
TCCNS: BIOL 2402

BIOL 2416 Genetics
4 Semester Credit Hours (3 Lecture Hours)
Principles of genetic transmissions and molecular basis of heredity and variation. Weekly recitation periods will involve team assignments, problem solving activities, and seminars.
Prerequisite: BIOL 1406 and 1407.
TCCNS: BIOL 2416

BIOL 2420 Principles of Microbiology
4 Semester Credit Hours (4 Lecture Hours)
Introduction to microorganisms with emphasis on those of importance in patient care. Principles of disinfection, sterilization, immunity. This class is intended for nursing majors; it cannot substitute for BIOL 2421 - Microbiology.
Co-requisite: SMTE 0092.
TCCNS: BIOL 2420

BIOL 2421 Microbiology
4 Semester Credit Hours (3 Lecture Hours, 3 Lab Hours)
An introduction to microorganisms including the bacteria, fungi, and viruses. Laboratory involves microbiological techniques and development of basic laboratory skills.
Prerequisite: BIOL 1406, 1407, CHEM 1411 and 1412.
Co-requisite: SMTE 0092.
TCCNS: BIOL 2421

BIOL 2472 Principles of Botany
4 Semester Credit Hours (3 Lecture Hours, 3 Lab Hours)
Introduction to the structure, function, diversity and application of plants. Laboratory focus on anatomical features, physiological adaptations, classification, and life cycles.
Prerequisite: BIOL 1407 and CHEM 1411.
Co-requisite: SMTE 0091.

BIOL 3300 Animal Nutrition
3 Semester Credit Hours (3 Lecture Hours)
Examines the dietary requirements of both companion animals and livestock. Includes the anatomy, physiology and biochemistry of the gastrointestinal system, nutrient procurement and use, feed additives, growth stimulants, metabolic diseases, and diet therapy. Cross listed with BIMS 3300.
Prerequisite: BIOL 1407 and CHEM 3411 and (CHEM 3412 or 3412*).
* May be taken concurrently.

BIOL 3325 Biostatistics
3 Semester Credit Hours (3 Lecture Hours)
The application of statistical analyses to biological data. Students will gain an understanding of how to apply statistical analyses to biological data through study of the principles of experimental design including how to frame informative research questions. At a fundamental level, these concepts are linked to the philosophy of science and our understanding of the way the world works.

BIOL 3345 Cell Physiology
3 Semester Credit Hours (3 Lecture Hours)
Emphasis on cellular functions that underlie physiological processes, transport across membranes, membrane potential and excitability, the cell nucleus, and organelles and their relationship to energy, metabolism, and transport mechanisms within the cell. Offered during Spring semester of odd-numbered years
Prerequisite: BIOL 2200 or BIMS 2200 and BIOL 3410.

BIOL 3403 Molecular Biology
4 Semester Credit Hours (3 Lecture Hours, 3 Lab Hours)
Principles of molecular biology including advanced concepts of gene structure, expression and regulation, chromatin structure, recombination, and current molecular biology techniques. Laboratory emphasis is on basic skills for nucleic acid analyses, including extraction, PCR amplification, quantification, restriction, and electrophoresis. DNA sequencing-based approaches are covered including bioinformatics for sequence comparisons, polymorphisms, and molecular identification. Cross listed with BIMS 3403.
Prerequisite: BIOL 2416 and 2421.
Co-requisite: SMTE 0092.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
<th>Description</th>
<th>Prerequisite(s)</th>
<th>Co-requisite(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 3410</td>
<td>Cell Biology</td>
<td>4</td>
<td>Study of cellular architecture and function. Topics include membranes, transport, organelles, cytoskeleton, and signaling mechanisms. Interrelationships of structure, function, energy and metabolism are explored. Laboratory will emphasize basic techniques of cell biology.</td>
<td>BIOL 2416 and CHEM 3411.</td>
<td>SMTE 0092.</td>
</tr>
<tr>
<td>BIOL 3413</td>
<td>Invertebrate Zoology</td>
<td>4</td>
<td>Structure, life history, and evolution of the invertebrates with special emphasis on the phylogeny and ecological relationships of the major phyla. Laboratory will involve field trips and survey collections. Offered fall semester every year.</td>
<td>BIOL 1407.</td>
<td>SMTE 0091.</td>
</tr>
<tr>
<td>BIOL 3414</td>
<td>Vertebrate Zoology</td>
<td>4</td>
<td>Structure, life history, and evolution of the vertebrates with special emphasis on the phylogeny and ecological relationships of the classes. Laboratory will involve field trips and survey collections. Offered only in Spring semester.</td>
<td>BIOL 1407.</td>
<td>SMTE 0091.</td>
</tr>
<tr>
<td>BIOL 3425</td>
<td>Functional Anatomy</td>
<td>4</td>
<td>General trends in morphological development and adaptation as demonstrated by the anatomy and embryology of living and extinct chordates. Students may not receive credit for both this course and either BIOL 2401 - Anatomy and Physiology I or BIOL 2402 - Anatomy and Physiology II.</td>
<td>BIOL 1407.</td>
<td>SMTE 0091.</td>
</tr>
<tr>
<td>BIOL 3428</td>
<td>Principles of Ecology</td>
<td>4</td>
<td>Introduction to the interrelationships of organisms and their environment. Population structure, community classification and regulation, and energy flow in ecosystems will also be covered. Laboratory sections will focus on experimental design and field techniques in ecology.</td>
<td>BIOL 1407 and (BIOL 2200, 2300, BIMS 2200 or UNIV 1101 and UNIV 1102) and CHEM 1411 and (MATH 2413 or 2413). “May be taken concurrently.”</td>
<td>SMTE 0091.</td>
</tr>
<tr>
<td>BIOL 3430</td>
<td>Physiology</td>
<td>4</td>
<td>The study of physiological processes that are the product of complex interactions between tissues, organs and organ systems, with emphasis on the circulatory, respiratory, endocrine, muscular, digestive, and urogenital systems. Particular focus on homeostasis, and the role of the environment and evolution on organ systems. Students may not receive credit for both this course and either BIOL 2401 - Anatomy and Physiology I, or BIOL 2402 - Anatomy and Physiology II.</td>
<td>BIOL 1407.</td>
<td>SMTE 0091.</td>
</tr>
<tr>
<td>BIOL 3455</td>
<td>Plant form and Function</td>
<td>4</td>
<td>Anatomy of vegetative and reproductive organs of plants, unique cellular features, development and differentiation of cell and tissue types. Emphasis on physiological mechanisms of response and adaptation to the environment.</td>
<td>BIOL 1407.</td>
<td></td>
</tr>
<tr>
<td>BIOL 3479</td>
<td>Plant Ecology</td>
<td>4</td>
<td>Structure, physiology, life cycles, and economic impact of plants. Factors influencing diversity, succession and ecological distribution of plants.</td>
<td>BIOL 1407.</td>
<td>SMTE 0091.</td>
</tr>
<tr>
<td>BIOL 4100</td>
<td>Research Ethics and Professionalism</td>
<td>1</td>
<td>A course designed to enhance the professionalism of undergraduate researchers. This course discusses the codified aspects of research ethics, including fabrication, falsification and plagiarism of data; assigning authorship, submitting manuscripts to more than one journal and management of lab teams. It also addresses careers in science, resume writing, producing the successful application and interviewing skills.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL 4301</td>
<td>Embryology</td>
<td>3</td>
<td>Studies the events that occur just prior to and during gestation. Includes gametogenesis, chromosomal and single gene aberrations, teratology, and the development of the body systems.</td>
<td>BIOL 2416.</td>
<td></td>
</tr>
<tr>
<td>BIOL 4302</td>
<td>Coral Reef Conservation</td>
<td>3</td>
<td>Survey of challenges and threats facing coral reef ecosystems in the 21st century and discussion of conservation and management strategies. Topics include biology and ecology of reef ecosystems, climate change impacts, coral bleaching, over-fishing and the effectiveness and design of marine protected areas.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL 4304</td>
<td>Biology of Viruses</td>
<td>3</td>
<td>Introduction to the study of viruses, including viral life cycles, replication schemes and Baltimore classification of representative bacteriophages, plant and animal viruses. Emphasis on analysis and review of primary literature on viruses.</td>
<td>BIOL 2416, 2421 and CHEM 1411.</td>
<td></td>
</tr>
<tr>
<td>BIOL 4308</td>
<td>Biogeography</td>
<td>3</td>
<td>This course offers an overview of the theories, methods, and current directions in modern biogeography, emphasizing marine and terrestrial plant and animal species and communities.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL 4311</td>
<td>Biological Bases of Behavior</td>
<td>3</td>
<td>This lecture-based course examines the processes by which neuronal circuits generate behaviors and the mechanisms by which experience modulates the activity of these circuits.</td>
<td>BIOL 4323.</td>
<td></td>
</tr>
</tbody>
</table>
BIOL 4312 Mariculture Techniques
3 Semester Credit Hours (2 Lecture Hours, 2 Lab Hours)
The study and hands-on application of biological, mechanical, and other concepts required to develop the skills and techniques necessary for efficient operation and management of public and private aquaculture facilities. Offered in Fall of odd-numbered years.
Prerequisite: BIOL 4370.

BIOL 4319 Biology of Marine Mammals
3 Semester Credit Hours (3 Lecture Hours)
Introduction to marine mammals, with a focus on their interactions with their biotic and abiotic environment
Prerequisite: BIOL 1407.

BIOL 4323 Global Change Ecology
3 Semester Credit Hours (3 Lecture Hours)
An introduction to the effects of climatic and anthropogenic change on terrestrial and aquatic structure and function. Includes readings from the current literature and discussion of controversial articles.
Prerequisite: BIOL 3428.

BIOL 4328 Fisheries
3 Semester Credit Hours (3 Lecture Hours)
A study of theory and techniques in fisheries science, including practical fisheries sampling designs and techniques, behavior of fisheries populations and application to resource management with emphasis in tide-influenced waters. Includes readings in the current literature.
Prerequisite: BIOL 1407.

BIOL 4329 Fisheries Techniques
3 Semester Credit Hours (2 Lecture Hours, 3 Lab Hours)
This class is designed to provide practical experience in the theory and application of traditional and modern fisheries sampling and analytical techniques used in Fisheries Science and Management. This is a hands-on field- and laboratory-based course that will develop skills that are most commonly used by fisheries biologists and technicians. Offered in Fall of even-numbered years.
Prerequisite: BIOL 4328.

BIOL 4334 Biology and Ecology of Coral Reefs
3 Semester Credit Hours (3 Lecture Hours)
This course will introduce the biology of corals, describe the abiotic and biotic interactions among coral reef ecosystem inhabitants, identify the threats of climate change, and discuss the conservation and management of reefs for the future. Offered every spring.
Prerequisite: BIOL 3428.

BIOL 4335 Conservation Biology
3 Semester Credit Hours (3 Lecture Hours)
Principles and theories relating to the conservation of biological diversity, including patterns and processes creating biological diversity, estimates of extinction rates, consequences of losses of biodiversity and causes of diversity loss.
Prerequisite: BIOL 3428.

BIOL 4336 Marine Ecology
3 Semester Credit Hours (3 Lecture Hours)
Habitats and community structure in marine environments; biotic and abiotic factors governing the distribution of marine organisms.

BIOL 4340 Genomics, Proteomics and Bioinformatics
3 Semester Credit Hours (3 Lecture Hours)
An introduction to integrative biological study using genome-wide approaches and bioinformatics. The “-omics” technologies (Genomics, Proteomics, Metabolomics, etc.) will be surveyed for current and potential contributions to understanding biological function at molecular, cellular, organismal and ecosystem levels.
Prerequisite: BIOL 2416 and 3410 or CHEM 4401.

BIOL 4343 Oceans and Human Health
3 Semester Credit Hours (3 Lecture Hours)
Healthy oceans are essential to the habitability of our planet – for humans and all other forms of life. Students will explore links between oceans, pollution, human well-being, ecosystem services, resource management, and the science and legislation governing the enforcement of water quality standards.

BIOL 4350 Research and Design
1-3 Semester Credit Hours (1-3 Lecture Hours)
Course will include experimental design, literature review of a research topic and laboratory work on the research topic.

BIOL 4353 Down the River: Biology of Gulf Coast Fishes
3 Semester Credit Hours (3 Lecture Hours)
This course covers aspects of ecology and biogeography of riverine and estuarine fishes while exposing students to field sampling techniques and museum preparation of specimens. This will be a unique opportunity for students to gain an in-depth understanding of the biological complexity of Texas Gulf Coast river systems while gaining hands-on experience in field and museum ichthyological techniques that are employed by state, federal and academic researchers alike.
Co-requisite: SMTE 0091.

BIOL 4355 Public Aquarium and Animal Care Operations
3 Semester Credit Hours (3 Lecture Hours)
This course examines the unique requirements needed for public aquariums and zoos to balance animal care and health with public display for general education and conservation research.
Co-requisite: SMTE 0091.

BIOL 4370 Mariculture
3 Semester Credit Hours (3 Lecture Hours)
Survey of the physiological, behavioral, environmental, and economic parameters governing the culture of selected aquatic species. Included are techniques employed worldwide to produce aquatic products.
Prerequisite: BIOL 1407.

BIOL 4371 Population Genetics
3 Semester Credit Hours (3 Lecture Hours)
An introduction to evolutionary processes and their genetic basis, this course focuses on theoretical and experimental approaches to the study of population genetics, quantitative genetics, evolutionary ecology, and molecular evolution.
Prerequisite: BIOL 2416 and MATH 2413.

BIOL 4396 Directed Independent Study
1-3 Semester Credit Hours (1-3 Lecture Hours)
Research in areas of current interest. Written report required. May be repeated for a maximum of 6 semester hours.
Prerequisite: BIOL 1407 and CHEM 1412.
BIOL 4399 Directed Independent Research
3-6 Semester Credit Hours (3-6 Lecture Hours)
Independent laboratory- or field-based research project on topic of current interest. Project developed in conjunction with a faculty advisor. Written report required. May be repeated once for a total of 6 semester credit hours.

BIOL 4405 Limnology
4 Semester Credit Hours (4 Lecture Hours)
The study of the functional relationships and productivity of aquatic communities as they are affected by their physical, chemical, and biotic environment. The influence of man's activities on these systems will be the focus of the course.
Prerequisite: BIOL 3428.
Co-requisite: SMTE 0091.

BIOL 4406 Immunology
4 Semester Credit Hours (4 Lecture Hours)
An overview of immunology with emphasis on current knowledge of the immune system. Detailed examination of the specific cells, cytokines, antibodies, and molecules that comprise the immune system. Laboratory exercises demonstrate the basic principles and techniques used in immunologic studies. Cross listed with BIMS 4406.
Prerequisite: BIOL 2421.
Co-requisite: SMTE 0092.

BIOL 4408 Microbial Diversity and Ecology
4 Semester Credit Hours (4 Lecture Hours)
Biodiversity and roles of microorganisms in natural environments. Interactions with other micro- and macro-organisms (humans, animals and plants) and with abiotic factors. Unique abilities of microorganisms such as nitrogen fixation and adaptation to extreme environments.
Prerequisite: (BIOL 2421 or 4328).
Co-requisite: SMTE 0092.

BIOL 4410 Mammalogy
4 Semester Credit Hours (3 Lecture Hours, 3 Lab Hours)
Systematics and ecology of mammals. Offered in even Fall semesters.
Prerequisite: BIOL 1407.
Co-requisite: SMTE 0091.

BIOL 4411 Animal Behavior
4 Semester Credit Hours (3 Lecture Hours, 3 Lab Hours)
An understanding of why animals behave in the manner they do, through examination of both invertebrate and vertebrate species.
Prerequisite: BIOL 1407.
Co-requisite: SMTE 0091.

BIOL 4413 Entomology
4 Semester Credit Hours (4 Lecture Hours)
A broad overview of the natural history, classification, phylogeny, ecology, behavior, development and physiology of insects and their kin. The lab will involve field work, collection and curation.
Prerequisite: BIOL 3413.
Co-requisite: SMTE 0091.

BIOL 4417 Field Biology
4 Semester Credit Hours (1 Lecture Hour, 6 Lab Hours)
A hands-on course designed to teach students key concepts by immersing them in nature. Topics include adaptations of plants and animals in different habitats, food web interactions, and how biotic and abiotic forces interact to structure natural communities including spatial and temporal variation in communities.
Prerequisite: BIOL 3428.
Co-requisite: SMTE 0091.
BIOL 4446 Tropical Ecosystems & Conservation
4 Semester Credit Hours (3 Lecture Hours, 3 Lab Hours)
Survey of the ecology and conservation issues of the major ecosystems in the tropics and field techniques used to study tropical forest ecology.
Prerequisite: BIOL 3428.
Co-requisite: SMTE 0091.

BIOL 4452 Ecology and Evolution of Fishes
4 Semester Credit Hours (3 Lecture Hours, 4 Lab Hours)
This course covers aspects of fish ecology from individual, population, community, and ecosystem levels. We discuss the role of the environment on fish physiology and behavior, food-web dynamics, community assembly and diversity, ecosystem interactions, and anthropogenic impacts on fishes with a focus on conservation.
Prerequisite: BIOL 4432.
Co-requisite: SMTE 0091.

BIOL 4547 Marine Science Field Camp
5 Semester Credit Hours (3 Lecture Hours, 6 Lab Hours)
Students learn techniques required to properly conduct marine science field research. Practical, hands-on experience is gained in a variety of topics including biotic and abiotic sample collection and processing, quantitative analysis of field data, evaluation of environmental factors, survival and distribution of living organisms, and the structure of biotic communities.

BIOL 4590 Selected Topics
5 Semester Credit Hours (5 Lecture Hours)
Variable content. May be repeated for credit.

BIOL 4598 Biology Internship
2-6 Semester Credit Hours
Two to six semester credit hours may be earned by working in an internship position in a governmental agency, private industry, or other appropriate venue.

BIOL 4609 Field and Sampling Techniques
3,9 Semester Credit Hours (3 Lecture Hours, 6 Lab Hours)
The study of techniques required for proper field work in the biological sciences. The course includes ecological sampling methods, safety, logistics, equipment operation and maintenance and travel concerns.
Co-requisite: SMTE 0091.