MECHANICAL ENGINEERING TECHNOLOGY, BS

Program Description
The Engineering Technology Council of the American Society for Engineering Education defines Engineering Technology as the profession in which knowledge of mathematics and natural sciences gained by higher education, experience, and practices is devoted primarily to the implementation and extension of existing technology for the benefit of humanity. Engineering technology focuses on the applied aspects of science and engineering to prepare graduates for practice in product improvement, manufacturing, and engineering operational functions. Engineering technologists are suited for industries that deal with application, manufacturing, implementation, engineering operation, sales, and production.

The Mechanical Engineering Technology degree is offered in both the traditional face-to-face format and an online format for the upper-division courses. The fully-online courses form a competency-based education program in which students receive credit for courses when specific competencies are demonstrated, and receive the degree when all degree-level competencies are demonstrated. In some cases, students may be able to take traditional courses for credit in the competency-based education program.

The goal of Engineering Technology is to prepare well educated, highly skilled, and socially and professionally responsible engineering technologists from a diverse population of students to create productive and rewarding careers. Graduates will be well grounded in the fundamentals of engineering, mathematics, science, communications, and problem solving. To create continuous improvement, the program uses input from employers, alumni, and the Industrial Advisory Committee. Engineering Technology is accredited by the Engineering Technology Accreditation Commission (ETAC) of ABET, www.abet.org (http://www.abet.org).

Contact Information
Engineering Technology Program, Texas A&M University-Corpus Christi, Corpus Christi, TX 78412-5797. Phone: (361) 825-5849. Web: http://entc.tamucc.edu/

Mechanical Engineering Technology
Mechanical Engineering Technology graduates will exemplify the attributes previously described.

Program Educational Objectives
Program Educational Objectives (PEOs) are statements that describe what graduates are expected to accomplish within a few years of graduation.

The Program Educational Objectives for B.S. Mechanical Engineering Technology program are:

1. Within two years of graduation from TAMU-CC, our graduates who have chosen to pursue a career in mechanical engineering technology, or a related field, will be working in industry, government, construction, or other professional service, in the areas of design, manufacture, sales, installation, operation and/or maintenance of complex, high-value systems.

2. Within five years of graduation from TAMU-CC, our graduates who have chosen to pursue a career in mechanical engineering technology or a related field will have:
 a. advanced in their careers as indicated by obtaining promotions and positions of leadership, awards, recognitions as subject matter experts, and/or registration as professional engineers or in other professional disciplines; or by entrepreneurial activities, products or processes developed, or patents;
 b. demonstrated the ability to increase their knowledge and expertise through continuing education or advanced degrees; and
 c. contributed to the improvement of the profession and of society through participation and service in professional and public organizations and through mentoring.

Student Learning Outcomes
Student Outcomes describe what students are expected to know and be able to do by the time of graduation. These relate to the knowledge, skills, and behaviors that students acquire as they progress through the program.

Graduates of the B.S. Mechanical Engineering Technology program will have:

1. an ability to apply knowledge, techniques, skills and modern tools of mathematics, science, engineering, and technology to solve broadly-defined engineering problems appropriate to the discipline;
2. an ability to design systems, components, or processes meeting specified needs for broadly-defined engineering problems appropriate to the discipline;
3. an ability to apply written, oral, and graphical communication in broadly-defined technical and non-technical environments; and an ability to identify and use appropriate technical literature;
4. an ability to conduct standard tests, measurements, and experiments and to analyze and interpret the results to improve processes; and
5. an ability to function effectively as a member as well as a leader on technical teams.

Competency-Based Education Program for BS Mechanical Engineering Technology (CBE MCET)
A competency-based education (CBE) program is one in which specific, concrete competencies are defined. The top-level competencies are the ABET student learning outcomes listed above. Subject-specific sub-competencies are identified and assessed in each of the CBE MCET courses. When a student demonstrates the competencies for a specific course, the student passes the course. When all of the competencies for the degree have been demonstrated, the student receives the degree. The CBE MCET program is being offered for the upper-division (3000- and 4000-level) courses. Once a student has completed the first two years of the traditional MCET BS program as described below, the student may opt for the CBE MCET program. Each of the courses in the CBE MCET program, with the exception of certain laboratory classes described below, may be completed online.

A student must apply for the CBE program in MCET. The student options include:

- Traditional (3000- and 4000-level) courses:
 - Traditional face-to-face courses:
 - Students should have completed the first two years of the traditional MCET BS program as described above.
 - Students may opt for traditional courses in the upper-division courses in the MCET BS program.
- Competency-based (CBE) program:
 - CBE MCET program:
 - Students should have completed the first two years of the traditional MCET BS program as described above.
 - Students may opt for the CBE MCET program.
- Hybrid program:
 - Hybrid format:
 - Students should have completed the first two years of the traditional MCET BS program as described above.
 - Students may opt for the hybrid format in the MCET BS program.
• Must be admitted as a student to TAMU-CC.
• Must indicate a positive decision to apply for the CBE MCET program, either through ApplyTexas or a change of major form if student is already at TAMU-CC.
• Must have completed all core courses and all lower-division courses as listed below under “Prior Course Completion.”
• Must have a 2.5 GPA in all coursework that applies to the program (core courses and lower-division courses that will be counted towards the program), whether taken at TAMU-CC or elsewhere.

Credit By Examination: Some courses will have an online pre-test that students can take to earn college credit for that course. The test will be the equivalent of a comprehensive final exam that will test students on all competencies related to the course. The pre-test will be proctored according to the same standard as all other tests taken in the course. If students pass the pre-test, they will receive credit and not be required to take the course. The fee for taking the pre-test in each course must be paid by the student and may range up to $300 per exam. The student should contact the office of the Department of Engineering or the Office of Distance Education and Learning Technologies at TAMU-CC to determine the exact cost of the pre-test.

Credit By Portfolio: For the courses listed below, it is possible that through experience on the job (such as running a process unit in a plant or working in a machine shop), the student might have acquired the competencies in a particular course and therefore be able to obtain credit by submitting examples of work, certified by a supervisor, that illustrate the competencies in the course. The competencies for these courses may be found on the program website, and students given the opportunity to submit portfolios for evaluation (at the cost of an evaluation fee up to $300). The supervisor must be approved by the Engineering faculty as having the necessary qualifications to validate the work submitted by the student. The portfolio(s) submitted by the student must demonstrate that the student has mastered the competencies in the class, as published on the program website.

Because of the nature of the last two courses, credit by portfolio must be obtained for both courses and cannot be obtained for each course individually.

Student Learning Outcomes
The student learning outcomes for the CBE MCET program are the same as for the traditional BS in MCET. These student outcomes will be met by the demonstration of specific competencies in each of the courses in the CBE MCET program.

General Requirements
A summary of the hours necessary for graduation follows:

The specific requirements for each aspect of the Bachelor of Science degree in Mechanical Engineering Technology are indicated below.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTC 3220</td>
<td>Thermal-Fluids Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>ENTC 3302</td>
<td>Manufacturing Processes</td>
<td>3</td>
</tr>
<tr>
<td>ENTC 4210</td>
<td>Solid Mechanics Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>ENTC 4415</td>
<td>Project Justification and Management</td>
<td>4</td>
</tr>
<tr>
<td>ENTC 4350</td>
<td>Capstone Projects</td>
<td>3</td>
</tr>
</tbody>
</table>

Because of the nature of the last two courses, credit by portfolio must be obtained for both courses and cannot be obtained for each course individually.

Program Requirements
The courses that are considered to be in the major field of study are all MATH, CHEM, PHYS, COSC, ENTC, ENGR, EEEEN, and MEEN courses in the curriculum listed below (any ENGR, MEEN, or EEEEN courses taken to fulfill MCET degree requirements must be approved by the program coordinator and the department chair).

The specific requirements for each aspect of the Bachelor of Science degree in Mechanical Engineering Technology are indicated below. Students are encouraged to take the NCEES (National Council of Examiners for Engineering and Surveying) Fundamentals of Engineering (FE) exam during their senior year. The FE exam, http://ncees.org/exams/fe-exam/, is the first step in the process that leads to the P.E. license.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTC 3220</td>
<td>Thermal-Fluids Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>ENTC 3302</td>
<td>Manufacturing Processes</td>
<td>3</td>
</tr>
<tr>
<td>ENTC 4210</td>
<td>Solid Mechanics Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>ENTC 4415</td>
<td>Project Justification and Management</td>
<td>4</td>
</tr>
<tr>
<td>ENTC 4350</td>
<td>Capstone Projects</td>
<td>3</td>
</tr>
</tbody>
</table>

Because of the nature of the last two courses, credit by portfolio must be obtained for both courses and cannot be obtained for each course individually.
ENGR 2460 Circuit Analysis 4
ENGR 3316 Thermodynamics 3
ENTC 4446 Control Systems I 4
ENTC 4415 Project Justification and Management 4
ENTC 4350 Capstone Projects 3

Required Mechanical Engineering Technology Courses

- ENTC 2325 Statics 3
- ENTC 2326 Dynamics 3
- ENGR 3322 Materials Science 3
- ENTC 3302 Manufacturing Processes 3
 or ENGR 3350 Manufacturing Processes
- ENTC 3220 Thermal-Fluids Laboratory 2
- ENTC 3306 Fluid Mechanics 3
 or ENGR 3315 Fluid Mechanics
- ENTC 3308 Strength of Materials 3
 or ENGR 3320 Strength of Materials
- ENTC 3455 Solid Modeling and Finite Elements 4
- ENTC 4210 Solid Mechanics Laboratory 2
- ENTC 4320 Heat Transfer 3
- ENTC 4330 Solid Mechanics 3
- ENTC 4360 Mechanical System Design 3

Technical Elective Block

Any upper division 3 hour Math, Science or Mechanical Engineering courses. 3

Select three of the following: 9

- ENTC 3323 Robotics and Automation
- ENTC 4322 Programmable Logic Controllers
- ENTC 4335 Energy Conversion
- ENTC 4360 Mechanical System Design
- ENTC 4490 Selected Topics

Program Requirements

Common Engineering Technology Courses - CBE

- ENGR 3316 Thermodynamics 3
- ENGR 4415 Project Justification and Management 4
- ENTC 4446 Control Systems I 4

Required Mechanical Engineering Technology Courses - CBE

- ENTC 3306 Fluid Mechanics 3
- ENTC 3308 Strength of Materials 3
- ENGR 3322 Materials Science 3
- ENTC 3455 Solid Modeling and Finite Elements 4
- ENTC 4320 Heat Transfer 3
- ENTC 4330 Solid Mechanics 3
- ENTC 4360 Mechanical System Design 3

Chemical Process Industry Elective Block - CBE

- ENTC 4331 Unit Processes 3
- ENTC 4332 Process Modeling and Control 3
- ENTC 4333 Chemical Reaction Engineering 3
- ENTC 4335 Energy Conversion 3

On-Campus Block

- ENTC 3220 Thermal-Fluids Laboratory 2
- ENTC 3302 Manufacturing Processes 3
- ENTC 4210 Solid Mechanics Laboratory 2

Competency-Based Education Program for BS Mechanical Engineering Technology (CBE MCET)

Prior Course Completion

A student must apply for admission to the CBE MCET program. Prior to being admitted to the program, the student must complete all TAMU-CC core curriculum requirements and the following courses or their equivalents (those courses which satisfy the core requirements for mathematics, life and physical sciences, and the component area option (CAO) are also listed, for completeness).

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1411</td>
<td>General Chemistry I *</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 1211</td>
<td>Introduction to Engineering</td>
<td>2</td>
</tr>
<tr>
<td>ENGR 1312</td>
<td>Engineering Graphics I</td>
<td>3</td>
</tr>
<tr>
<td>ENTC 2325</td>
<td>Statics</td>
<td>3</td>
</tr>
<tr>
<td>ENTC 2326</td>
<td>Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>ENTC 2414</td>
<td>Circuit Analysis I</td>
<td>4</td>
</tr>
<tr>
<td>ENTC 4320</td>
<td>Solid Mechanics Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>ENTC 4330</td>
<td>Solid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>ENTC 4360</td>
<td>Mechanical System Design</td>
<td>3</td>
</tr>
<tr>
<td>ENTC 4331</td>
<td>Unit Processes</td>
<td>3</td>
</tr>
<tr>
<td>ENTC 4332</td>
<td>Process Modeling and Control</td>
<td>3</td>
</tr>
<tr>
<td>ENTC 4333</td>
<td>Chemical Reaction Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENTC 4335</td>
<td>Energy Conversion</td>
<td>3</td>
</tr>
<tr>
<td>ENTC 3220</td>
<td>Thermal-Fluids Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>ENTC 3302</td>
<td>Manufacturing Processes</td>
<td>3</td>
</tr>
<tr>
<td>ENTC 4210</td>
<td>Solid Mechanics Laboratory</td>
<td>2</td>
</tr>
</tbody>
</table>

1 Engineering Technology students must take two courses in Physics even if the natural science portion of the core curriculum is satisfied by other means. Students transferring to A&M-Corpus Christi from other institutions may have various means for fulfilling the core curriculum. Please refer to the “General Education Requirement” in the catalog section entitled “Undergraduate Programs (http://catalog.tamucc.edu/undergraduate/undergraduate-programs/).” Three hours of the Component Area Option of the University Core Curriculum are satisfied by the fourth (lab) hour of each of MATH 2413 Calculus I (4 sch), PHYS 2425 University Physics I (4 sch), and PHYS 2426 University Physics II (4 sch) (the first three lecture hours of each are used to satisfy the mathematics and natural science components of the Core). The other three hours of the Component Area Option of the Core are satisfied by the three lecture hours of MATH 2414 Calculus II (4 sch).

* Online offering
Courses

ENTC 2325 Statics
3 Semester Credit Hours (3 Lecture Hours)
Theory of engineering mechanics involving forces, moments, and couples on stationary structures; equilibrium in two and three dimensions; free body diagrams; truss analysis; friction; centroids; centers of gravity and moments of inertia.
Prerequisite: (PHYS 2425).

ENTC 2326 Dynamics
3 Semester Credit Hours (3 Lecture Hours)
Theory of engineering mechanics involving the motion of particles, rigid bodies and systems of particles; Newton's Laws; work and energy relationships; principles of impulse and momentum; application of kinetics and kinematics to the solution of engineering problems.
Prerequisite: (ENTC 2325).

ENTC 2414 Circuit Analysis I
4 Semester Credit Hours (4 Lecture Hours)
Fundamental aspects of DC circuit analysis: charge, voltage, resistance, current, and power; Ohm's Law; methods of analysis; series and parallel circuits; Kirchhoff's voltage and current laws; Thevenin and Norton Theorems; electrical measurement instruments; and use of analysis software. Offered: Fall/Spring.
Prerequisite: MATH 2413.
Co-requisite: PHYS 2426, SMTE 0099.
TCCNS: ENGT 1401

ENTC 2490 Special Topics
1-4 Semester Credit Hours (1-4 Lecture Hours, 3 Lab Hours)
Subject material variable. May be repeated for different topics.

ENTC 3302 Thermodynamics
3 Semester Credit Hours (3 Lecture Hours)
Theory and application of energy methods in engineering; conservation of mass and energy; energy transfer by heat, work and mass; thermodynamic properties; analysis of open and closed systems; the second law of thermodynamics and entropy; gas, vapor and refrigeration cycles. Offered: Fall/Spring.
Prerequisite: PHYS 2425 and MATH 2414.

ENTC 3320 Manufacturing Processes
3 Semester Credit Hours (3 Lecture Hours)
Introduction to metal and non-metallic manufacturing processes; casting, forging, rolling, extrusion, sheet metal forming, cutting tools turning and milling operations, abrasive machining, welding and joining, powder compaction, molding, forming of plastics, surface treatment, human factors and safety. Offered: Fall/Spring.
Prerequisite: (ENTC 3308 or 3308 physic) and (ENTC 3320 or 3320 physic).
Co-requisite: SMTE 0099.

ENTC 3320 Human Factors Engineering
3 Semester Credit Hours (3 Lecture Hours)
Application of human factors engineering principles utilized in mechanical system and product design. Overview of human characteristics and research and design techniques.
Prerequisite: (ENTC 3302 or 3302 physic).

ENTC 4350 Capstone Projects (3 sch)
14 weeks and will be synchronized with spring and fall semester offerings of the traditional face-to-face version of ENTC 4350.

* Online offering
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
<th>Course Description</th>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTC 3406</td>
<td>FLUID MECHANICS AND FLUID POWER</td>
<td>4</td>
<td>FLUID MECHANICS Fluid properties, fluid statics, dynamics, and kinematics, conservation of energy and momentum incompressible, laminar and turbulent flow. Similitude and dimensional analysis, and viscous flow.</td>
<td>SMTE 0099.</td>
</tr>
<tr>
<td>ENTC 3408</td>
<td>STRENGTH OF MATERIALS</td>
<td>4</td>
<td>Concepts in strength of materials, stress, strain; torsion; deformation under load; direct, shear, and combined stresses; shear and moment diagrams; mohr's circle; stress concentrations, bending stresses and torsional shear stresses, deflection in beams and shafts; columns, connections, and pressure vessels.</td>
<td>SMTE 0099.</td>
</tr>
<tr>
<td>ENTC 3410</td>
<td>Material Science</td>
<td>4</td>
<td>Structure and properties of metallic and nonmetallic materials; microstructure, mechanical testing, phase diagrams, heat treatment, testing, ceramics, polymers, composites, construction materials, failure analysis, nondestructive evaluation, corrosion and thermal properties of materials.</td>
<td>CHEM 1411 and PHYS 2425.</td>
</tr>
<tr>
<td>ENTC 3415</td>
<td>Circuit Analysis II</td>
<td>4</td>
<td>AC circuit analysis principles: AC generation, periodic functions, complex numbers, phasors, impedance and admittance, network theorems, power, frequency response, filters, transformers, and balanced three-phase systems; and use of analysis software.</td>
<td>ENTC 2414.</td>
</tr>
<tr>
<td>ENTC 3416</td>
<td>Digital Fundamentals</td>
<td>4</td>
<td>Introduces the principles of digital logic analysis and design: logic functions; logic gates, number systems and conversions; Boolean algebra; logic simplification, combinational circuits, programmable logic devices, sequential circuits, and use of analysis and simulation software.</td>
<td>SMTE 0099.</td>
</tr>
<tr>
<td>ENTC 3418</td>
<td>Microprocessors/Microcontrollers</td>
<td>4</td>
<td>Introduction to microprocessor architecture, assembly language programming, and interfacing. Topics include computer organization, addressing modes, instruction set, interrupts, timing, memory, and interfacing.</td>
<td>(COSC 1330 or 1435).</td>
</tr>
<tr>
<td>ENTC 3420</td>
<td>THERMODYNAMICS</td>
<td>4</td>
<td>Theory and application of energy methods in engineering; conservation of mass and energy; energy transfer by heat, work and mass; thermodynamic properties; analysis of open and closed systems; the second law of thermodynamics and entropy; gas, vapor and refrigeration cycles.</td>
<td>SMTE 0099.</td>
</tr>
<tr>
<td>ENTC 3444</td>
<td>Electronic Devices and Circuits I</td>
<td>4</td>
<td>An introduction to semiconductor theory; solid state devices, including diodes, Bipolar Junction transistors, JFETs, and MOSFETs; principles of operational amplifiers; transducers and sensors.</td>
<td>ENTC 3415.</td>
</tr>
<tr>
<td>ENTC 3450</td>
<td>Electronic System Design</td>
<td>4</td>
<td>Principles of engineering design of electronic circuits and systems; time and frequency responses; network analysis; systems specifications; evaluation, testing, and verification; use of electronic design automation tools.</td>
<td>EEE 3345.</td>
</tr>
<tr>
<td>ENTC 3455</td>
<td>Solid Modeling and Finite Elements</td>
<td>4</td>
<td>Use of computer aided design and solid modeling tools in engineering design and manufacturing including: solid modeling, stress, flow and heat transfer analysis using finite element methods, and rapid prototyping. Offered: Spring.</td>
<td>ENTC 3308.</td>
</tr>
<tr>
<td>ENTC 4310</td>
<td>Programmable Logic Controllers</td>
<td>3</td>
<td>Introduction to PLCs and their use in industrial automation. Topics include programming, counters, timers, interrupts, and process control applications. Offered: As needed.</td>
<td>ENTC 3416.</td>
</tr>
<tr>
<td>ENTC 4320</td>
<td>Heat Transfer</td>
<td>3</td>
<td>Fundamental study of convection, conduction and radiation as applied to heat transfer, heat exchangers, boilers, other heat transfer equipment. Offered: Spring.</td>
<td>ENTC 3306 and 3320.</td>
</tr>
<tr>
<td>ENTC 4322</td>
<td>Programmable Logic Controllers</td>
<td>3</td>
<td>Introduction to PLCs and their use in industrial automation. Topics include programming, counters, timers, interrupts, and process control applications. Offered: As needed.</td>
<td>ENTC 3416.</td>
</tr>
<tr>
<td>ENTC 4330</td>
<td>Solid Mechanics</td>
<td>3</td>
<td>Stress analysis of deformable bodies and mechanical elements; stress transformation; combined loading; failure modes; material failure theories; fracture and fatigue; deflections and instabilities; thick cylinders; curved beams; design of structural/mechanical members; design processes for shafts, bearings, springs, fasteners, and mechanical joints.</td>
<td>ENTC 3308.</td>
</tr>
<tr>
<td>ENTC 4331</td>
<td>Unit Processes</td>
<td>3</td>
<td>Principles and methods for staged separation processes including distillation, absorption and stripping, extraction, and adsorption systems. Offered in Fall and Spring</td>
<td>ENTC 3420.</td>
</tr>
</tbody>
</table>
ENTC 4332 Process Modeling and Control
3 Semester Credit Hours (3 Lecture Hours)
Prerequisite: ENTC 3306.

ENTC 4333 Chemical Reaction Engineering
3 Semester Credit Hours (3 Lecture Hours)
Fundamental principles of chemical reaction engineering and application to design and analysis of basic chemical reactors containing both homogeneous and heterogeneous reactions. Offered Fall and Spring.
Prerequisite: ENTC 4331 and 4332.

ENTC 4335 Energy Conversion
3 Semester Credit Hours (2 Lecture Hours, 3 Lab Hours)
Installation, design characteristics, operational performance, and maintenance of motors, turbines, pumps and compressors. Introduction to global energy concerns; fossil and nuclear fuels; energy consumption analysis; energy management and conservation techniques; renewable and alternative energy sources. Modern energy conversion devices such as fuel cells, photovoltaic cells, and micro-power turbines.
Prerequisite: ENTC 3320.

ENTC 4350 Capstone Projects
3 Semester Credit Hours (3 Lecture Hours)
This course allows students to employ the knowledge attained in other courses to implement (including building, testing, and documenting) the project approved in ENTC 4415 - Project Justification and Management, within budget and on schedule. Course requirements include a written report and oral presentations. Normally taken in the student’s last semester.
Prerequisite: ENTC 4415.
Co-requisite: SMTE 0099.

ENTC 4360 Mechanical System Design
3 Semester Credit Hours (3 Lecture Hours)
Analysis, management and cost, team work, optimal design, and computer simulation of mechanical systems and components; Applications in fluid flow and heat transfer, machine elements, and stress analysis. Selected course topics are assigned as projects.
Prerequisite: ENTC 3308.

ENTC 4415 Project Justification and Management
4 Semester Credit Hours (3 Lecture Hours, 2 Lab Hours)
Foundations of engineering economy, cash flow and equivalence, and project justification. Introduction to project management, planning, scheduling, and control, use of project management software, GANTT charts, PERT charts, critical path. Students prepare proposals, including specifications, timelines, schedule, and budget, for projects to be implemented in ENTC 4350 - Capstone Projects.
Co-requisite: SMTE 0099.

ENTC 4420 Embedded Systems
4 Semester Credit Hours (4 Lecture Hours)
Characteristics of embedded systems, system design, interface devices, memory management, interrupt support, input/output applications, software-hardware co-design, modular programming, multitasking, simulation, and control of external devices.
Prerequisite: (ENTC 3416 or 3418).
Co-requisite: SMTE 0099.

ENTC 4435 POWER PROTECTION SYSTEMS
4 Semester Credit Hours (4 Lecture Hours)
Course topics include safety, reliability and availability in power systems; breaker operation; relay operation and relay circuit design; fault tolerance; cost analysis; control systems and system surveillance.

ENTC 4446 Control Systems I
4 Semester Credit Hours (4 Lecture Hours)
Introduction to control systems; open and feedback; Laplace transform and frequency response; control valves; electric motors; P, PI, and PID modes of control; analog and digital controllers Process characteristics; analysis of control systems; gain and phase margin; stability.
Prerequisite: ENTC 2414.

ENTC 4490 Selected Topics
1-4 Semester Credit Hours (1-4 Lecture Hours)
Subject material variable. May be repeated for different topics.

ENTC 4496 Directed Independent Study
1-4 Semester Credit Hours
Requires a formal proposal of study to be completed in advance of registration, approval of supervising faculty and chairperson.