MECHANICAL ENGINEERING TECHNOLOGY, BS

Program Description

The Engineering Technology Council of the American Society for Engineering Education defines Engineering Technology as the profession in which knowledge of mathematics and natural sciences gained by higher education, experience, and practices is devoted primarily to the implementation and extension of existing technology for the benefit of humanity. Engineering technology focuses on the applied aspects of science and engineering to prepare graduates for practice in product improvement, manufacturing, and engineering operational functions. Engineering technologists are suited for industries that deal with application, manufacturing, implementation, engineering operation, sales, and production.

The Mechanical Engineering Technology degree is offered in both the traditional face-to-face format and an online format for the upper-division courses. The fully-online courses form a competency-based education program in which students receive credit for courses when specific competencies are demonstrated, and receive the degree when all degree-level competencies are demonstrated. In some cases, students may be able to take traditional courses for credit in the competency-based education program.

The goal of Engineering Technology is to prepare well-educated, highly skilled, and socially and professionally responsible engineering technologists from a diverse population of students to create productive and rewarding careers. Graduates will be well grounded in the fundamentals of engineering, mathematics, science, communications, and problem solving. To create continuous improvement, the program uses input from employers, alumni, and the Industrial Advisory Committee. Engineering Technology is accredited by the Engineering Technology Accreditation Commission (ETAC) of ABET, www.abet.org (http://www.abet.org).

Contact Information

Engineering Technology Program, Texas A&M University-Corpus Christi, Corpus Christi, TX 78412-5797. Phone: (361) 825-5849. Web: http://entc.tamucc.edu/

Mechanical Engineering Technology

Mechanical Engineering Technology graduates will exemplify the attributes previously described.

Student Learning Outcomes

- Practical, highly qualified engineering technologists.
- Employed in professional careers where they will solve problems using technical and hands-on skills developed during their studies.
- Employed by companies to apply their knowledge in the design, manufacture, sales, installation, operation and/or maintenance of complex, high-value systems.
- Socially and professionally responsible, possessing skills for life-long learning.

Graduates will have:

- an ability to select and apply knowledge, techniques, skills, and modern tools of the discipline to broadly-defined engineering technology activities.
- an ability to select and apply a knowledge of mathematics, science, engineering, and technology to engineering technology problems that require the application of principles and applied procedures or methodologies.
- an ability to conduct standard tests and measurements; to conduct, analyze, and interpret experiments; and to apply experimental results to improve processes.
- an ability to design systems, components, or processes for broadly-defined engineering technology problems appropriate to program educational objectives.
- an ability to function effectively as a member or leader on a technical team.
- ability to identify, analyze, and solve broadly-defined engineering technology problems.
- an ability to apply written, oral, and graphical communication in both technical and non-technical environments; and an ability to identify and use appropriate technical literature.
- an understanding of the need for and an ability to engage in self-directed continuing professional development.
- an understanding of and a commitment to address professional and ethical responsibilities including a respect for diversity.
- a knowledge of the impact of engineering technology solutions in a societal and global context.
- a commitment to quality, timeliness and continuous improvement.
- knowledge, problem solving ability and hands-on skills to enter careers in Mechanical Engineering Technology.
- can apply specific program principles to the analysis, design, development, implementation, or oversight of more advanced mechanical systems or processes.
- prepared to enter careers in materials, applied mechanics, computer-aided drafting/design, manufacturing, experimental techniques/procedure, analysis of engineering data, machine/mechanical design/analysis, power generation, fluid power, thermal/thermal system design/analysis, plant operation maintenance, technical sales, instrumentation/ control systems, heating, ventilation and air conditioning (HVAC).

Academic advisors and faculty mentors are available to assist students with their academic endeavors.

Competency-Based Education Program for BS Mechanical Engineering Technology (CBE MCET)

A competency-based education (CBE) program is one in which specific, concrete competencies are defined. The top-level competencies are the ABET student learning outcomes listed above. Subject-specific sub-competencies are identified and assessed in each of the CBE MCET courses. When a student demonstrates the competencies for a specific course, the student passes the course. When all of the competencies for the degree have been demonstrated, the student receives the degree. The CBE MCET program is being offered for the upper-division (3000- and 4000-level) courses. Once a student has completed the first two years of the traditional MCET BS program as described below, the student may opt for the CBE MCET program. Each of the courses in the CBE MCET
A summary of the hours necessary for graduation follows:

General Requirements

A summary of the hours necessary for graduation follows:

Program Requirements

The courses that are considered to be in the major field of study are all MATH, CHEM, PHYS, COSC, ENTC, ENGR, EEEN, and MEEN courses in the curriculum listed below (any ENGR, MEEN, or EEEN courses taken to fulfill MCET degree requirements must be approved by the program coordinator and the department chair).

The specific requirements for each aspect of the Bachelor of Science degree in Mechanical Engineering Technology are indicated below.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Curriculum Program</td>
<td>42</td>
</tr>
<tr>
<td>First-Year Seminars (when applicable)</td>
<td>0-2</td>
</tr>
<tr>
<td>Common Engineering Technology Courses</td>
<td>31</td>
</tr>
<tr>
<td>Required Mechanical Engineering Technology Courses</td>
<td>36</td>
</tr>
<tr>
<td>Technical Elective Block</td>
<td>12-13</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>121-124</td>
</tr>
</tbody>
</table>

Program Requirements

The courses that are considered to be in the major field of study are all MATH, CHEM, PHYS, COSC, ENTC, ENGR, EEEN, and MEEN courses in the curriculum listed below (any ENGR, MEEN, or EEEN courses taken to fulfill MCET degree requirements must be approved by the program coordinator and the department chair).

The specific requirements for each aspect of the Bachelor of Science degree in Mechanical Engineering Technology are indicated below.

Students are encouraged to take the NCES (National Council of Examiners for Engineering and Surveying) Fundamentals of Engineering (FE) exam during their senior year. The FE exam, http://ncees.org/exams/fe-exam/, is the first step in the process that leads to the P.E. license.

Student Learning Outcomes

The student learning outcomes for the CBE MCET program are the same as for the traditional BS in MCET. These student outcomes will be met by the demonstration of specific competencies in each of the courses in the CBE MCET program.

General Requirements

A summary of the hours necessary for graduation follows:

Course Code

- **Code**
- **Title**
- **Hours**

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTC 3220</td>
<td>Thermal-Fluids Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>ENTC 3302</td>
<td>Manufacturing Processes</td>
<td>3</td>
</tr>
<tr>
<td>ENTC 4210</td>
<td>Solid Mechanics Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>ENTC 4415</td>
<td>Project Justification and Management</td>
<td>4</td>
</tr>
<tr>
<td>ENTC 4350</td>
<td>Capstone Projects</td>
<td>3</td>
</tr>
</tbody>
</table>

Because of the nature of the last two courses, credit by portfolio must be obtained for both courses and cannot be obtained for each course individually.

Student Learning Outcomes

The student learning outcomes for the CBE MCET program are the same as for the traditional BS in MCET. These student outcomes will be met by the demonstration of specific competencies in each of the courses in the CBE MCET program.

General Requirements

A summary of the hours necessary for graduation follows:
Competency-Based Education Program for BS Mechanical Engineering Technology (CBE MCET)

Prior Course Completion
A student must apply for admission to the CBE MCET program. Prior to being admitted to the program, the student must complete all TAMU-CC core curriculum requirements and the following courses or their equivalents (those courses which satisfy the core requirements for mathematics, life and physical sciences, and the component area option (CAO) are also listed, for completeness).

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1411</td>
<td>General Chemistry I *</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 1211</td>
<td>Introduction to Engineering</td>
<td>2</td>
</tr>
<tr>
<td>ENGR 1311</td>
<td>Engineering Graphics I</td>
<td>3</td>
</tr>
<tr>
<td>ENTC 2325</td>
<td>Statics</td>
<td>3</td>
</tr>
<tr>
<td>ENTC 2326</td>
<td>Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 3306</td>
<td>Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>or ENGR 3315</td>
<td>Fluid Mechanics</td>
<td></td>
</tr>
<tr>
<td>ENTC 3308</td>
<td>Strength of Materials</td>
<td>3</td>
</tr>
<tr>
<td>or ENGR 3320</td>
<td>Strength of Materials</td>
<td></td>
</tr>
<tr>
<td>ENTC 3455</td>
<td>Solid Modeling and Finite Elements</td>
<td>4</td>
</tr>
<tr>
<td>ENTC 4320</td>
<td>Heat Transfer</td>
<td>3</td>
</tr>
<tr>
<td>ENTC 4330</td>
<td>Solid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>ENTC 4360</td>
<td>Mechanical System Design</td>
<td>3</td>
</tr>
<tr>
<td>ENTC 4325</td>
<td>Statics</td>
<td>3</td>
</tr>
<tr>
<td>or ENGR 2325</td>
<td>Statics</td>
<td></td>
</tr>
<tr>
<td>ENTC 4326</td>
<td>Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>or ENGR 2326</td>
<td>Dynamics</td>
<td></td>
</tr>
<tr>
<td>ENTC 2414</td>
<td>Circuit Analysis I</td>
<td>4</td>
</tr>
<tr>
<td>or ENGR 2460</td>
<td>Circuit Analysis</td>
<td></td>
</tr>
<tr>
<td>MATH 2413</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 2414</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2425</td>
<td>University Physics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2426</td>
<td>University Physics II</td>
<td>4</td>
</tr>
<tr>
<td>COSC 1330</td>
<td>Programming for Scientists, Engineers, and Mathematicians</td>
<td>3</td>
</tr>
</tbody>
</table>

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 3316</td>
<td>Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>ENTC 4446</td>
<td>Control Systems I</td>
<td>4</td>
</tr>
<tr>
<td>ENTC 3306</td>
<td>Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>ENTC 3308</td>
<td>Strength of Materials</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 3322</td>
<td>Materials Science</td>
<td>3</td>
</tr>
<tr>
<td>ENTC 3455</td>
<td>Solid Modeling and Finite Elements</td>
<td>4</td>
</tr>
<tr>
<td>ENTC 4320</td>
<td>Heat Transfer</td>
<td>3</td>
</tr>
<tr>
<td>ENTC 4330</td>
<td>Solid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>ENTC 4360</td>
<td>Mechanical System Design</td>
<td>3</td>
</tr>
<tr>
<td>ENTC 4331</td>
<td>Unit Processes</td>
<td>3</td>
</tr>
<tr>
<td>ENTC 4332</td>
<td>Process Modeling and Control</td>
<td>3</td>
</tr>
<tr>
<td>ENTC 4333</td>
<td>Chemical Reaction Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENTC 4335</td>
<td>Energy Conversion</td>
<td>3</td>
</tr>
</tbody>
</table>

Chemical Process Industry Elective Block - CBE

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTC 3220</td>
<td>Thermal-Fluids Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>ENTC 3302</td>
<td>Manufacturing Processes</td>
<td>3</td>
</tr>
<tr>
<td>ENTC 4210</td>
<td>Solid Mechanics Laboratory</td>
<td>2</td>
</tr>
</tbody>
</table>

Engineering Technology students must take two courses in Physics even if the natural science portion of the core curriculum is satisfied by other means. Students transferring to A&M-CC from other institutions may have various means for fulfilling the core curriculum. Please refer to the "General Education Requirement" in the catalog section entitled "Undergraduate Programs (http://catalog.tamucc.edu/undergraduate/undergraduate-programs/)." Three hours of the Component Area Option of the University Core Curriculum are satisfied by the fourth (lab) hour of each of MATH 2413 Calculus I (4 sch), PHYS 2425 University Physics I (4 sch), and PHYS 2426 University Physics II (4 sch) (the first three lecture hours of each are used to satisfy the mathematics and natural science components of the Core). The other three hours of the Component Area Option of the Core are satisfied by the three lecture hours of MATH 2414 Calculus II (4 sch).

* Online offering
ENTC 4350 Capstone Projects 3

Total Hours 55

1 Or, the student may select 4 courses from upper-division, traditional format ENTC and MEEN courses.

2 Because of their nature, these courses must be completed in a traditional face-to-face format on campus or have a face-to-face component, if credit is not obtained by portfolio (see above). The two lab classes will be taught during the same five-week summer school term, in the first term of the summer. ENTC 3302 Manufacturing Processes (3 sch) and ENTC 4350 Capstone Projects (3 sch) courses will be taught as hybrids, with online and face-to-face components. The face-to-face laboratory component of ENTC 3302 Manufacturing Processes (3 sch) will be taught during a five-week summer term. Because of the team nature of capstone projects, the online CBE version of ENTC 4350 Capstone Projects (3 sch) will last 14 weeks and will be synchronized with spring and fall semester offerings of the traditional face-to-face version of ENTC 4350 Capstone Projects (3 sch). The capstone project in ENTC 4350 Capstone Projects (3 sch) will be completed as subsystems by subgroups or individuals off campus and integrated on campus at the end of the semester, with arrangements made for team presentations.

* Online offering

Courses

ENTC 2325 Statics
3 Semester Credit Hours (3 Lecture Hours)
THEORY OF ENGINEERING MECHANICS INVOLVING FORCES, MOMENTS, AND COUPLES ON STATIONARY STRUCTURES; EQUILIBRIUM IN TWO AND THREE DIMENSIONS; FREE BODY DIAGRAMS; TRUSS ANALYSIS; FRICTION; CENTROIDS; CENTERS OF GRAVITY AND MOMENTS OF INERTIA.
Prerequisite: (PHYS 2425).

ENTC 2326 Dynamics
3 Semester Credit Hours (3 Lecture Hours)
THEORY OF ENGINEERING MECHANICS INVOLVING THE MOTION OF PARTICLES, RIGID BODIES AND SYSTEMS OF PARTICLES; NEWTON’S LAWS; WORK AND ENERGY RELATIONSHIPS; PRINCIPLES OF IMPULSE AND MOMENTUM; APPLICATION OF KINETICS AND KINEMATICS TO THE SOLUTION OF ENGINEERING PROBLEMS.
Prerequisite: (ENTC 2325).

ENTC 2414 Circuit Analysis I
4 Semester Credit Hours (4 Lecture Hours)
FUNDAMENTAL ASPECTS OF DC CIRCUIT ANALYSIS: CHARGE, VOLTAGE, RESISTANCE, CURRENT, AND POWER; OHM’S LAW; METHODS OF ANALYSIS; SERIES AND PARALLEL CIRCUITS; KIRCHHOFF’S VOLTAGE AND CURRENT LAWS; THEVENIN AND NORTON THEOREMS; ELECTRICAL MEASUREMENT INSTRUMENTS; AND USE OF ANALYSIS SOFTWARE.
Prerequisite: MATH 2413.
Co-requisite: PHYS 2426, SMTE 0099.
TCCNS: ENGT 1401

ENTC 2490 Special Topics
1-4 Semester Credit Hours (1-4 Lecture Hours, 3 Lab Hours)
SUBJECT MATERIAL VARIABLE. MAY BE REPEATED FOR DIFFERENT TOPICS.

ENTC 3220 Thermal-Fluids Laboratory
2 Semester Credit Hours (4 Lab Hours)
APPLICATION OF MEASUREMENT INSTRUMENTATION AND EXPERIMENTAL TECHNIQUES UTILIZED IN THERMODYNAMICS AND FLUID MECHANICS. EXPERIMENTS AND PROJECT IN HYDROSTATICS, HYDRODYNAMICS, AND THERMODYNAMICS.
Prerequisite: (ENTC 3306 or 3306*) and (ENTC 3320 or 3320*).
* May be taken concurrently.
Co-requisite: SMTE 0099.

ENTC 3302 Manufacturing Processes
3 Semester Credit Hours (2 Lecture Hours, 3 Lab Hours)
INTRODUCTION TO METAL AND NON-METALLIC MANUFACTURING PROCESSES; CASTING, FORGING, ROLLING, EXTRUSION, SHEET METAL FORMING, CUTTING TOOLS TURNING AND MILLING OPERATIONS, ABRASIVE MACHINING, WELDING AND JOINING, POWDER COMPACTION, MOLDING, FORMING OF PLASTICS, SURFACE TREATMENT, HUMAN FACTORS AND SAFETY.
Prerequisite: ENGR 1312 and (ENTC 3308 and 2326) or (ENGR 2326).
Co-requisite: SMTE 0099.

ENTC 3306 Fluid Mechanics
3 Semester Credit Hours (3 Lecture Hours)
FLUID PROPERTIES, FLUID STATICS, DYNAMICS, AND KINETICS, CONSERVATION OF ENERGY AND MOMENTUM INCOMPRESSIBLE, LAMINAR AND TURBULENT FLOW. SIMILITUDE AND DIMENSIONAL ANALYSIS, AND VISCOUS FLOW.
Prerequisite: (ENTC 2326 or ENGR 2326).

ENTC 3308 Strength of Materials
3 Semester Credit Hours (3 Lecture Hours)
CONCEPTS IN STRENGTH OF MATERIALS, STRESS, STRAIN; TORSION; DEFORMATION UNDER LOAD; DIRECT, SHEAR, AND COMBINED STRESSES; SHEAR AND MOMENT DIAGRAMS; MOHR’S CIRCLE; STRESS CONCENTRATIONS, BENDING STRESSES AND TORSIONAL SHEAR STRESSES, DEFORMATION IN BEAMS AND SHAFTS; COLUMNS, CONNECTIONS, AND PRESSURE VESSELS.
Prerequisite: (ENTC 2325 or ENGR 2325) and (ENTC 3410).

ENTC 3320 Thermodynamics
3 Semester Credit Hours (3 Lecture Hours)
THERMODYNAMIC PRINCIPLES; APPLICATION OF ENERGY METHODS IN ENGINEERING; CONSERVATION OF MASS AND ENERGY; ENERGY TRANSFER BY HEAT, WORK AND MASS; THERMODYNAMIC PROPERTIES; ANALYSIS OF OPEN AND CLOSED SYSTEMS; THE SECOND LAW OF THERMODYNAMICS AND ENTROPY; GAS, VAPOR AND REFRIGERATION CYCLES.
Prerequisite: PHYS 2425 and MATH 2414.

ENTC 3323 Robotics and Automation
3 Semester Credit Hours (3 Lecture Hours)
AUTOMATION IN A MANUFACTURING AND ASSEMBLY SETTING, MATERIAL HANDLING SYSTEMS, REMOTE GUIDED VEHICLES, AUTOMATED STORAGE AND RETRIEVAL SYSTEMS, COMPUTER NUMERICAL MACHINE TOOLS, ROBOTICS.
Prerequisite: ENTC 3415.
Co-requisite: SMTE 0099.

ENTC 3350 Human Factors Engineering
3 Semester Credit Hours (3 Lecture Hours)
APPLICATION OF HUMAN FACTORS ENGINEERING PRINCIPLES UTILIZED IN MECHANICAL SYSTEM AND PRODUCT DESIGN. OVERVIEW OF HUMAN CHARACTERISTICS AND RESEARCH AND DESIGN TECHNIQUES.
Prerequisite: (ENTC 3302 or 3302*).
* May be taken concurrently.

ENGT 1401 Special Topics
ENTC 3406 FLUID MECHANICS AND FLUID POWER
4 Semester Credit Hours (4 Lecture Hours)
FLUID MECHANICS Fluid properties, fluid statics, dynamics, and
kinematics, conservation of energy and momentum incompressible,
laminar and turbulent flow. Similitude and dimensional analysis, and
viscous flow.

ENTC 3408 STRENGTH OF MATERIALS
4 Semester Credit Hours (4 Lecture Hours)
Concepts in strength of materials, stress, strain; torsion; deformation
under load; direct, shear, and combined stresses; shear and moment
diagrams; mohr’s circle; stress concentrations, bending stresses and
torsional shear stresses; deflection in beams and shafts; columns,
connections, and pressure vessels.

ENTC 3410 Material Science
4 Semester Credit Hours (4 Lecture Hours)
STRUCTURE AND PROPERTIES OF METALLIC AND NONMETALLIC
MATERIALS; MICROSTRUCTURE, MECHANICAL TESTING, PHASE
DIAGRAMS, HEAT TREATMENT, TESTING, CERAMICS, POLYMERS,
COMPOSITES, CONSTRUCTION MATERIALS, FAILURE ANALYSIS,
NONDESTRUCTIVE EVALUATION, CORROSION AND THERMAL
PROPERTIES OF MATERIALS .
Prerequisite: CHEM 1411 and PHYS 2425.
Co-requisite: SMTE 0099.

ENTC 3414 Circuit Analysis II
4 Semester Credit Hours (4 Lecture Hours)
AC CIRCUIT ANALYSIS PRINCIPLES; AC GENERATION, PERIODIC
FUNCTIONS, COMPLEX NUMBERS, PHASORS, IMPEDANCE AND
ADMITTANCE, NETWORK THEOREMS, POWER, FREQUENCY RESPONSE,
FILTERS, TRANSFORMERS, AND BALANCED THREE-PHASE SYSTEMS,
AND USE OF ANALYSIS SOFTWARE.
Prerequisite: ENTC 2414.
Co-requisite: SMTE 0099.

ENTC 3416 Digital Fundamentals
4 Semester Credit Hours (4 Lecture Hours)
INTRODUCES THE PRINCIPLES OF DIGITAL LOGIC ANALYSIS AND
DESIGN: LOGIC FUNCTIONS; LOGIC GATES, NUMBER SYSTEMS
AND CONVERSIONS; BOOLEAN ALGEBRA; LOGIC SIMPLIFICATION,
COMBINATIONAL CIRCUITS, PROGRAMMABLE LOGIC DEVICES,
SEQUENTIAL CIRCUITS, AND USE OF ANALYSIS AND SIMULATION
SOFTWARE.
Co-requisite: ENTC 2414, SMTE 0099.

ENTC 3418 Microprocessors/Microcontrollers
4 Semester Credit Hours (4 Lecture Hours)
INTRODUCTION TO MICROPROCESSOR ARCHITECTURE, ASSEMBLY
LANGUAGE PROGRAMMING, AND INTERFACING. TOPICS INCLUDE
COMPUTER ORGANIZATION, ADDRESSING MODES, INSTRUCTION SET,
INTERRUPTS, TIMING, MEMORY, AND INTERFACING.
Prerequisite: (COSC 1330 or 1435).
Co-requisite: SMTE 0099.

ENTC 3420 THERMODYNAMICS
4 Semester Credit Hours (3 Lecture Hours, 3 Lab Hours)
Theory and application of energy methods in engineering; conservation
of mass and energy; energy transfer by heat, work and mass;
thermodynamic properties; analysis of open and closed systems; the
second law of thermodynamics and entropy; gas, vapor and refrigeration
cycles.

ENTC 3444 Electronic Devices and Circuits I
4 Semester Credit Hours (3 Lecture Hours, 3 Lab Hours)
AN INTRODUCTION TO SEMICONDUCTOR THEORY; SOLID STATE
DEVICES, INCLUDING DIODES, BIPOLAR JUNCTION TRANSISTORS,
JFETS, AND MOSFETS; PRINCIPLES OF OPERATIONAL AMPLIFIERS;
TRANSUCERS AND SENSORS.
Prerequisite: ENTC 3415.
Co-requisite: SMTE 0099.

ENTC 3450 Electronic System Design
4 Semester Credit Hours (4 Lecture Hours)
PRINCIPLES OF ENGINEERING DESIGN OF ELECTRONIC CIRCUITS AND
SYSTEMS; TIME AND FREQUENCY RESPONSES; NETWORK ANALYSIS;
SYSTEMS SPECIFICATIONS; EVALUATION, TESTING, AND VERIFICATION;
USE OF ELECTRONIC DESIGN AUTOMATION TOOLS.
Prerequisite: EENE 3345.
Co-requisite: SMTE 0099.

ENTC 3455 Solid Modeling and Finite Elements
4 Semester Credit Hours (3 Lecture Hours, 3 Lab Hours)
USE OF COMPUTER AIDED DESIGN AND SOLID MODELING TOOLS IN
ENGINEERING DESIGN AND MANUFACTURING INCLUDING: SOLID
MODELING, STRESS, FLOW AND HEAT TRANSFER ANALYSIS USING
FINITE ELEMENT METHODS, AND RAPID PROTOTYPING.
Prerequisite: ENTC 3308.

ENTC 4310 Solid Mechanics Laboratory
2 Semester Credit Hours (4 Lab Hours)
EXPERIMENTAL PRINCIPLES FROM STRENGTH OF MATERIALS, AND
EXPERIMENTS AND COMPUTER-BASED ANALYSIS OF MACHINE
ELEMENTS AND STRUCTURES FOR STRENGTH OF MATERIAL AND
SOLID MECHANICS.
Prerequisite: (ENTC 4330*).
May be taken concurrently.
Co-requisite: SMTE 0099.

ENTC 4320 Heat Transfer
3 Semester Credit Hours (3 Lecture Hours)
FUNDAMENTAL STUDY OF CONVECTION, CONDUCTION AND RADIATION
AS APPLIED TO HEAT TRANSFER, HEAT EXCHANGERS, BOILERS, OTHER
HEAT TRANSFER EQUIPMENT.
Prerequisite: ENTC 3306 and 3320.

ENTC 4322 Programmable Logic Controllers
3 Semester Credit Hours (3 Lecture Hours)
INTRODUCTION TO PLCs AND THEIR USE IN INDUSTRIAL AUTOMATION.
TOPICS INCLUDE PROGRAMMING, COUNTERS, TIMERS, INTERRUPTS,
AND PROCESS CONTROL APPLICATIONS.
Prerequisite: ENTC 3416.
Co-requisite: SMTE 0099.

ENTC 4330 Solid Mechanics
3 Semester Credit Hours (3 Lecture Hours)
STRESS ANALYSIS OF DEFORMABLE BODIES AND MECHANICAL
ELEMENTS; STRESS TRANSFORMATION; COMBINED LOADING; FAILURE
MODES; MATERIAL FAILURE THEORIES; FRACTURE AND FATIGUE;
DEFLECTIONS AND INSTABILITIES; THICK CYLINDERS; CURVED
BEAMS; DESIGN OF STRUCTURAL/MECHANICAL MEMBERS; DESIGN
PROCESSES FOR SHAFTS, BEARINGS, SPRINGS, FASTENERS, AND
MECHANICAL JOINTS.
Prerequisite: ENTC 3308.
ENTC 4331 Unit Processes
3 Semester Credit Hours (3 Lecture Hours)
PRINCIPLES AND METHODS FOR STAGED SEPARATION PROCESSES INCLUDING DISTILLATION, ABSORPTION AND STRIPPING, EXTRACTION, AND ADSORPTION SYSTEMS. OFFERED IN FALL AND SPRING
Prerequisite: ENTC 4320.

ENTC 4332 Process Modeling and Control
3 Semester Credit Hours (3 Lecture Hours)
PROCESS MODELING, DYNAMICS, AND FEEDBACK CONTROL. LINEAR CONTROL THEORY. APPLICATION OF LAPLACE TRANSFORMS AND FREQUENCY RESPONSE TO THE ANALYSIS OF OPEN-LOOP AND CLOSED-LOOP PROCESS DYNAMICS. DYNAMIC RESPONSE CHARACTERISTICS OF PROCESSES. STABILITY ANALYSIS AND GAIN/PHASE MARGINS. DESIGN AND TUNING OF SYSTEMS FOR CONTROL OF LEVEL, FLOW, AND TEMPERATURE. OFFERED FALL AND SPRING.
Prerequisite: ENTC 4331 and 4332.

ENTC 4333 Chemical Reaction Engineering
3 Semester Credit Hours (3 Lecture Hours)
FUNDAMENTAL PRINCIPLES OF CHEMICAL REACTION ENGINEERING AND APPLICATION TO DESIGN AND ANALYSIS OF BASIC CHEMICAL REACTORS CONTAINING BOTH HOMOGENEOUS AND HETEROGENEOUS REACTIONS. OFFERED FALL AND SPRING.
Prerequisite: ENTC 4331 and 4332.

ENTC 4335 Energy Conversion
3 Semester Credit Hours (2 Lecture Hours, 3 Lab Hours)
INSTALLATION, DESIGN CHARACTERISTICS, OPERATIONAL PERFORMANCE, AND MAINTENANCE OF MOTORS, TURBINES, PUMPS AND COMPRESSORS. INTRODUCTION TO GLOBAL ENERGY CONCERNS; FOSSIL AND NUCLEAR FUELS; ENERGY CONSUMPTION ANALYSIS; ENERGY MANAGEMENT AND CONSERVATION TECHNIQUES; RENEWABLE AND ALTERNATIVE ENERGY SOURCES. MODERN ENERGY CONVERSION DEVICES SUCH AS FUEL CELLS, PHOTOVOLTAIC CELLS, AND MICRO-POWER TURBINES.
Prerequisite: ENTC 3306.

ENTC 4350 Capstone Projects
3 Semester Credit Hours (3 Lecture Hours)
THIS COURSE ALLOWS STUDENTS TO EMPLOY THE KNOWLEDGE ATTAINED IN OTHER COURSES TO IMPLEMENT (INCLUDING BUILDING, TESTING, AND DOCUMENTING) THE PROJECT APPROVED IN ENTC 4415 - PROJECT JUSTIFICATION AND MANAGEMENT, WITHIN BUDGET AND ON SCHEDULE. COURSE REQUIREMENTS INCLUDE A WRITTEN REPORT AND ORAL PRESENTATIONS. NORMALLY TAKEN IN THE STUDENT'S LAST SEMESTER.
Prerequisite: ENTC 4415.
Co-requisite: SMTE 0099.

ENTC 4360 Mechanical System Design
3 Semester Credit Hours (3 Lecture Hours)
ANALYSIS, MANAGEMENT AND COST, TEAM WORK, OPTIMAL DESIGN, AND COMPUTER SIMULATION OF MECHANICAL SYSTEMS AND COMPONENTS; APPLICATIONS IN FLUID FLOW AND HEAT TRANSFER, MACHINE ELEMENTS, AND STRESS ANALYSIS. SELECTED COURSE TOPICS ARE ASSIGNED AS PROJECTS.
Prerequisite: ENTC 3308.

ENTC 4415 Project Justification and Management
4 Semester Credit Hours (3 Lecture Hours, 2 Lab Hours)
FOUNDATIONS OF ENGINEERING ECONOMY, CASH FLOW AND EQUIVALENCE, AND PROJECT JUSTIFICATION. INTRODUCTION TO PROJECT MANAGEMENT, PLANNING, SCHEDULING, AND CONTROL, USE OF PROJECT MANAGEMENT SOFTWARE, GANTT CHARTS, PERT CHARTS, CRITICAL PATH. STUDENTS PREPARE PROPOSALS, INCLUDING SPECIFICATIONS, TIMELINES, SCHEDULE, AND BUDGET, FOR PROJECTS TO BE IMPLEMENTED IN ENTC 4350 - CAPSTONE PROJECTS. PREREQUISITE: SENIOR STANDING. THIS COURSE SHOULD BE TAKEN THE SEMESTER PRECEDING ENTC 4350 - CAPSTONE PROJECTS.
Co-requisite: SMTE 0099.

ENTC 4420 Embedded Systems
4 Semester Credit Hours (4 Lecture Hours)
CHARACTERISTICS OF EMBEDDED SYSTEMS, SYSTEM DESIGN, INTERFACE DEVICES, MEMORY MANAGEMENT, INTERRUPT SUPPORT, INPUT/OUTPUT APPLICATIONS, SOFTWARE-HARDWARE CO-DESIGN, MODULAR PROGRAMMING, MULTITASKING, SIMULATION, AND CONTROL OF EXTERNAL DEVICES.
Prerequisite: (ENTC 3416 or 3418).
Co-requisite: SMTE 0099.

ENTC 4435 POWER PROTECTION SYSTEMS
4 Semester Credit Hours (4 Lecture Hours)
Course topics include safety, reliability and availability in power systems; breaker operation; relay operation and relay circuit design; fault tolerance; cost analysis; control systems and system surveillance.

ENTC 4446 Control Systems I
4 Semester Credit Hours (4 Lecture Hours)
INTRODUCTION TO CONTROL SYSTEMS; OPEN AND FEEDBACK; LAPLACE TRANSFORM AND FREQUENCY RESPONSE; CONTROL VALVES; ELECTRIC MOTORS; P, PI, AND PID MODES OF CONTROL; ANALOG AND DIGITAL CONTROLLERS PROCESS CHARACTERISTICS; ANALYSIS OF CONTROL SYSTEMS; GAIN AND PHASE MARGIN; STABILITY.
Prerequisite: ENTC 2414.

ENTC 4490 Selected Topics
1-4 Semester Credit Hours (1-4 Lecture Hours)
SUBJECT MATERIAL VARIABLE. MAY BE REPEATED FOR DIFFERENT TOPICS.

ENTC 4496 Directed Independent Study
1-4 Semester Credit Hours
REQUIRES A FORMAL PROPOSAL OF STUDY TO BE COMPLETED IN ADVANCE OF REGISTRATION, APPROVAL OF SUPERVISING FACULTY AND CHAIRPERSON.