INDUSTRIAL ENGINEERING, BS

Program Description

The Industrial Engineering curriculum prepares graduates to design, develop, implement, and improve integrated systems that include people, materials, information, equipment, and energy. The curriculum includes in-depth instruction to accomplish the integration of systems using appropriate analytical, computational, and experimental practices.

Industrial Engineering, BS

Industrial Engineers apply science, mathematics, and engineering methods to complex system integration and operations. Because these systems are so large and complex, IEs need to have knowledge and skills in a wide variety of disciplines, the ability to work well with people, and a broad, systems perspective. Industrial engineers use their knowledge and skills to improve systematic processes through the use of statistical analysis, interpersonal communication, design, planning, quality control, operations management, computer simulation, and problem solving.

The Industrial Engineering curriculum prepares graduates to design, develop, implement, and improve integrated systems that include people, materials, information, equipment, and energy. The curriculum includes in-depth instruction to accomplish the integration of systems using appropriate analytical, computational, and experimental practices.

Program Educational Objectives

In accordance with ABET accreditation requirements, the Program Educational Objectives (PEOs) describe the professional accomplishments that Industrial Engineering graduates are expected to achieve, within a few years of graduation. The PEOs are:

1. Within one year of graduation from TAMU-CC, our graduates will be working in industry, government, construction, or other professional service as industrial engineers, or will be pursuing graduate degrees in industrial engineering or post-baccalaureate degrees in other fields, such as law, business, or medicine.

2. Within five years of graduation from TAMU-CC our graduates will have
 • advanced in their careers as indicated by obtaining promotions and positions of leadership, awards, recognitions as subject matter experts, and/or registration as professional engineers or in other professional disciplines; or by entrepreneurial activities, products or processes developed, patents, and/or publications;
 • demonstrated the ability to increase their knowledge and expertise through continuing education or advanced degrees; and
 • contributed to the improvement of the professional and of society through research, national and/or international collaboration, and/or professional and public service including mentoring.

Student Learning Outcomes

Graduates will have:

1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
3. an ability to communicate effectively with a range of audiences
4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

Fundamentals of Engineering (FE) Exam

All engineering students are encouraged to take the Fundamentals of Engineering (FE) exam. This is exam is an important step toward licensure as a Professional Engineer (PE), which many engineers find useful and necessary in their careers. Close to the end of the B.S. degree program is an excellent time to take the exam, because the student has the best preparation for the exam at that point in the student’s academic career.

Admission from pre-engineering

For all students admitted into a pre-engineering program at TAMU-CC who wish to transfer into one of the TAMU-CC engineering programs (CEEN, EEEN, IEEN, MEEN), the cumulative GPA for all MATH, CHEM, PHYS, ENGR, COSC, CEEN, EEEN, IEEN, or MEEN courses that appear in the CEEN, EEEN, IEEN, or MEEN program curricula, plus any ENTC courses, taken at TAMU-CC, or their equivalents taken at other institutions, should be 2.5 or greater to be admitted into the CEEN, EEEN, IEEN, or MEEN programs at TAMU-CC. There should be a minimum of at least 12 hours of such courses taken at TAMU-CC or elsewhere before a transfer / admission to CEEN, EEEN, IEEN, or MEEN may be considered.

All such students must also meet the requirements to take MATH 2413 Calculus I (4 sch) if they have not already done so.

Master of Business Administration (MBA) Option

Industrial engineering students who have completed 96 credit hours toward the Industrial Engineering B.S. degree and earned a cumulative GPA of 3.0 or higher may elect the MBA option in senior year. Students who elect the MBA option are required to take three MBA foundation courses to satisfy the Technical Elective Block requirements:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 5312</td>
<td>Foundations of Accounting</td>
<td>3</td>
</tr>
<tr>
<td>ECON 5311</td>
<td>Foundations in Economics</td>
<td>3</td>
</tr>
<tr>
<td>FINA 5311</td>
<td>Financial Management Concepts</td>
<td></td>
</tr>
</tbody>
</table>

Students who plan to elect the MBA Option are encouraged to have summer internship experience before senior year, and will be able to complete an MBA degree study with 2 regular semesters and 1 summer session beyond an Industrial Engineering B.S. degree study.
General Requirements

The Industrial Engineering curriculum consists of a minimum of 123 credit hours. It can be divided into five main areas:

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Curriculum Program</td>
<td>42</td>
</tr>
<tr>
<td>First-Year Seminars (when applicable)</td>
<td></td>
</tr>
<tr>
<td>Common Engineering, Math and Science Courses</td>
<td>48</td>
</tr>
<tr>
<td>Required Industrial Engineering Courses</td>
<td>21</td>
</tr>
<tr>
<td>Capstone Project</td>
<td>3</td>
</tr>
<tr>
<td>Technical Elective Block</td>
<td>9</td>
</tr>
</tbody>
</table>

Total Credit Hours: 123-125

1 Full-time, first time in college students are required to take the first-year seminars.
 - UNIV 1101 First-Year Seminar I (1 sch)
 - UNIV 1102 First-Year Seminar II (1 sch)

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full-time, First-year Students</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNIV 1101</td>
<td>First-Year Seminar I *</td>
<td>1</td>
</tr>
<tr>
<td>UNIV 1102</td>
<td>First-Year Seminar II *</td>
<td>1</td>
</tr>
<tr>
<td>Core Curriculum Program</td>
<td></td>
<td>42</td>
</tr>
<tr>
<td>University Core Curriculum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 1411</td>
<td>General Chemistry I (Science requirement) *</td>
<td></td>
</tr>
<tr>
<td>MATH 2413</td>
<td>Calculus I (Mathematics requirement)</td>
<td></td>
</tr>
<tr>
<td>MATH 2414</td>
<td>Calculus II (Component Area Option)</td>
<td></td>
</tr>
<tr>
<td>PHYS 2425</td>
<td>University Physics I (Science requirement)</td>
<td></td>
</tr>
</tbody>
</table>

Common Engineering, Math and Science Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1411</td>
<td>General Chemistry I (included in University Core) *</td>
<td></td>
</tr>
<tr>
<td>COSC 1330</td>
<td>Programming for Scientists, Engineers, and Mathematicians</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 1211</td>
<td>Introduction to Engineering</td>
<td>2</td>
</tr>
<tr>
<td>ENGR 1312</td>
<td>Engineering Graphics I</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 3316</td>
<td>Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 3322</td>
<td>Materials Science</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 2325</td>
<td>Statics</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 2460</td>
<td>Circuit Analysis</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 3350</td>
<td>Manufacturing Processes</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 4240</td>
<td>Project Management</td>
<td>2</td>
</tr>
<tr>
<td>ENGR 4420</td>
<td>Engineering Lab Measurements</td>
<td>4</td>
</tr>
<tr>
<td>MATH 2413</td>
<td>Calculus I (included in University Core)</td>
<td></td>
</tr>
<tr>
<td>MATH 2414</td>
<td>Calculus II (included in University Core)</td>
<td></td>
</tr>
<tr>
<td>MATH 2415</td>
<td>Calculus III</td>
<td>4</td>
</tr>
<tr>
<td>MATH 3311</td>
<td>Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3315</td>
<td>Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3342</td>
<td>Applied Probability and Statistics *</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 2425</td>
<td>University Physics I (included in University Core)</td>
<td></td>
</tr>
<tr>
<td>PHYS 2426</td>
<td>University Physics II</td>
<td>4</td>
</tr>
</tbody>
</table>

Required Industrial Engineering Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEN 2302</td>
<td>Engineering Economics</td>
<td>3</td>
</tr>
<tr>
<td>IEEN 3302</td>
<td>Operations Research</td>
<td>3</td>
</tr>
<tr>
<td>IEEN 3320</td>
<td>Human Factors</td>
<td>3</td>
</tr>
<tr>
<td>IEEN 3324</td>
<td>Human Computer Interface</td>
<td>3</td>
</tr>
<tr>
<td>IEEN 3330</td>
<td>Robotics and Automation</td>
<td>3</td>
</tr>
<tr>
<td>IEEN 4312</td>
<td>Experimental Design and Analysis</td>
<td>3</td>
</tr>
<tr>
<td>IEEN 4330</td>
<td>Digital Systems Simulation</td>
<td>3</td>
</tr>
</tbody>
</table>

Technical Electives Block

Students must complete 9 hours of elective courses. These may include upper-division Engineering and 4000-level Engineering Technology courses outside of the required courses in their degree plans, any 4000-level MATH, COSC, BIOL, CHEM, or PHYS courses, the specified courses in the 5-year BS/MBA program, and other courses approved by the Department of Engineering.

Capstone Project

ENGR 4370 Capstone Projects (3 sch)

Total Hours: 124

1 The 3 lecture hours in MATH 2413 Calculus I (4 sch), CHEM 1411 General Chemistry I (4 sch), and PHYS 2425 University Physics I (4 sch) satisfy the required 3 and 6 core curriculum hours in math and science, respectively. The 1 lab hour from each of these three courses, and the 3 lecture hours from MATH 2414 Calculus II (4 sch), satisfy the 6-hour component area option requirement in the core curriculum. Students transferring to Texas A&M University - Corpus Christi from other institutions may have various means for fulfilling the core curriculum. Please refer to the “General Education Requirement” in the catalog section entitled “Undergraduate Programs (http://catalog.tamucc.edu/undergraduate/undergraduate-programs).”

* Online offering
^ Blended offering

Capstone Project

All industrial engineering students must complete a senior-level capstone project in ENGR 4370 Capstone Projects (3 sch). Students will work with practicing engineers and engineering faculty. The Capstone Project will give engineering students practical, professional experience to prepare them for careers in electrical engineering.
Courses

Engineering Courses

ENGR 1211 Introduction to Engineering
2 Semester Credit Hours (1 Lecture Hour, 2 Lab Hours)
INTRODUCTION TO THE ENGINEERING PROFESSION, ETHICS, AND DISCIPLINES; DEVELOPMENT OF SKILLS IN TEAMWORK, PROBLEM SOLVING AND DESIGN; OTHER TOPICS INCLUDE COMPUTER APPLICATIONS AND PROGRAMMING; VISUALIZATION, ORTHOGRAPHIC DRAWINGS AND CAD TOOLS; INTRODUCTION TO ELECTRICAL CIRCUITS, SEMICONDUCTOR DEVICES, DIGITAL LOGIC, COMMUNICATIONS AND THEIR APPLICATION IN SYSTEMS; NEWTON’S LAWS, UNIT CONVERSIONS, STATISTICS, EXCEL; BASIC GRAPHICS SKILLS. OFFERING: FALL AND SPRING.
Prerequisite: MATH 1314.
TCCNS: ENGR 1201

ENGR 1212 FOUNDATIONS OF ENGINEERING II
2 Semester Credit Hours (2 Lecture Hours)
ENGR 1312 Engineering Graphics I
3 Semester Credit Hours (2 Lecture Hours, 2 Lab Hours)
TOPICS INCLUDE, DEPENDING ON THE MAJOR: EMPHASIS ON COMPUTER APPLICATIONS AND PROGRAMMING AND SOLIDS MODELING USING CAD TOOLS OR OTHER SOFTWARE; FUNDAMENTALS OF ENGINEERING SCIENCE; ADVANCED GRAPHIC SKILLS. OFFERED FALL AND SPRING.
Prerequisite: MATH 1314.

ENGR 2105 Electrical Circuits Laboratory
1 Semester Credit Hour (3 Lab Hours)
LABORATORY EXPERIMENTS SUPPORTING THEORETICAL PRINCIPLES PRESENTED IN ENGR 2305 INVOLVING DC AND AC CIRCUIT THEORY; NETWORK THEOREMS, TIME, AND FREQUENCY DOMAIN CIRCUIT ANALYSIS. INTRODUCTION TO PRINCIPLES AND OPERATION OF BASIC LABORATORY EQUIPMENT; LABORATORY REPORT PREPARATION.
Prerequisite: ENGR 2305.
May be taken concurrently.
Co-requisite: ENGR 2305, SMTE 0099.

ENGR 2106 Digital Systems Laboratory
1 Semester Credit Hour (1 Lab Hour)
BASIC LABORATORY EXPERIMENTS SUPPORTING THEORETICAL PRINCIPLES PRESENTED IN ENGR 2306 INVOLVING DESIGN, CONSTRUCTION, AND ANALYSIS OF COMBINATIONAL AND SEQUENTIAL DIGITAL CIRCUITS AND SYSTEMS, INCLUDING LOGIC GATES, ADDERS, MULTIPLEXERS, ENCODERS, DECODERS, ARITHMETIC LOGIC UNITS, LATCHES, FLIP-FLOPS, REGISTERS, AND COUNTERS; PREPARATION OF LABORATORY REPORTS.
Prerequisite: MATH 1314.
Co-requisite: ENGR 2306, SMTE 0099.

ENGR 2305 Electrical Circuits
3 Semester Credit Hours (3 Lecture Hours)
PRINCIPLES OF ELECTRICAL CIRCUITS AND SYSTEMS. BASIC CIRCUIT ELEMENTS (RESISTANCE, INDUCTANCE, MUTUAL INDUCTANCE, CAPACITANCE, INDEPENDENT AND DEPENDENT CONTROLLED VOLTAGE, AND CURRENT SOURCES). TOPOLOGY OF ELECTRICAL NETWORKS; KIRCHHOFF’S LAWS; NOSE AND MESH ANALYSIS; DC CIRCUIT ANALYSIS; OPERATIONAL AMPLIFIERS; TRANSIENT AND SINUSOIDAL STEADY-STATE ANALYSIS; AC CIRCUIT ANALYSIS; FIRST- AND SECOND-ORDER CIRCUITS; BODE PLOTS; AND USE OF COMPUTER SIMULATION SOFTWARE TO SOLVE CIRCUIT PROBLEMS.
Prerequisite: (PHYS 2425 and MATH 2414).
Co-requisite: ENGR 2105.

ENGR 2306 Digital Systems
3 Semester Credit Hours (3 Lecture Hours)
INTRODUCTION TO THEORY AND DESIGN OF DIGITAL LOGIC, CIRCUITS, AND SYSTEMS. NUMBER SYSTEMS, OPERATIONS AND CODES; LOGIC GATES; BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION; KARNAUGH MAPS; COMBINATIONAL LOGIC; FUNCTIONS OF COMBINATIONAL LOGIC; FLIP-FLOPS AND RELATED DEVICES; COUNTERS; SHIFT REGISTERS; SEQUENTIAL LOGIC; MEMORY AND STORAGE.
Prerequisite: MATH 1314 and 2305.
* May be taken concurrently.
Co-requisite: ENGR 2106.

ENGR 2320 STRENGTHS OF MATERIALS
3 Semester Credit Hours (3 Lecture Hours)
Concepts in strengths of materials, stress, strain; deformation under load, direct, shear, and combined stresses concentrations, bending stresses and torsional shear stresses, deflection in beams and shafts; columns, and pressure vessels.
Prerequisite: ENGR 2321.

ENGR 2325 Statics
3 Semester Credit Hours (2 Lecture Hours, 3 Lab Hours)
THEORY OF ENGINEERING MECHANICS INVOLVING FORCES, MOMENTS, AND COUPLES ON STATIONARY STRUCTURES; EQUILIBRIUM IN TWO AND THREE DIMENSIONS; FREE BODY DIAGRAMS; TRUSS ANALYSIS; FRICTION; CENTROIDS; CENTERS OF GRAVITY AND MOMENTS OF INERTIA.
Prerequisite: PHYS 2425 and MATH 2414.
* May be taken concurrently.
TCCNS: ENGR 2301

ENGR 2326 Dynamics
3 Semester Credit Hours (2 Lecture Hours, 3 Lab Hours)
THEORY OF ENGINEERING MECHANICS INVOLVING THE MOTION OF PARTICLES, RIGID BODIES AND SYSTEMS OF PARTICLES; NEWTON’S LAWS; WORK AND ENERGY RELATIONSHIPS; PRINCIPLES OF IMPULSE AND MOMENTUM; APPLICATION OF KINETICS AND KINEMATICS TO THE SOLUTION OF ENGINEERING PROBLEMS.
TCCNS: ENGR 2302

ENGR 2350 MANUFACTURING PROCESSES
3 Semester Credit Hours (3 Lecture Hours)
Introduction to metal and non-metallic manufacturing processes; casting, forging, rolling, extrusion, sheet metal forming, cutting tools tuning and milling operations, abrasive machining, welding and joining, powder compaction, molding, forming of plastics, surface treatment, human factors and safety.
Prerequisite: MATH 2414.
ENGR 2300 CIRCUIT ANALYSIS
3 Semester Credit Hours (3 Lecture Hours)
This course covers principles of electronics: charge, voltage, resistance, current, and power; Ohm’s Law; Kirchhoff’s voltage and current laws; RC and LC circuits; periodic functions, average and RMS measurements; transformers, electrical measurement instruments. The laboratory provides hands-on experience with devices and circuits discussed in the classroom.
Prerequisite: PHYS 2426.

ENGR 2406 DIGITAL SYSTEMS
4 Semester Credit Hours (4 Lecture Hours)
Prerequisite: (COSC 1330 or 1435) and (ENGR 2460 and MATH 2414).
Co-requisite: SMTE 0099.

ENGR 2460 Circuit Analysis
4 Semester Credit Hours (3 Lecture Hours, 3 Lab Hours)
This course covers principles of electronics: charge, voltage, resistance, current, and power; Ohm’s Law; Kirchhoff’s voltage and current laws; RC and LC circuits; periodic functions, average and RMS measurements; transformers, electrical measurement instruments. The laboratory provides hands-on experience with devices and circuits discussed in the classroom.
Prerequisite: (PHYS 2426, MATH 2414 and 3315)*. May be taken concurrently.
Co-requisite: SMTE 0099.

ENGR 3315 Fluid Mechanics
3 Semester Credit Hours (3 Lecture Hours)
Fluid properties, fluid statics, dynamics, and kinematics; conservation of energy and momentum incompressible, laminar and turbulent flow; similarity and dimensional analysis, and viscous flow.
Prerequisite: MATH 3315 or 3315 and ENGR 2326 and MATH 2415.

ENGR 3316 Thermodynamics
3 Semester Credit Hours (3 Lecture Hours)
Theory and application of energy methods in engineering; conservation of mass and energy; energy transfer by heat, work and mass; thermodynamic properties; analysis of open and closed systems; the second law of thermodynamics and entropy; gas, vapor and refrigeration cycles.
Prerequisite: (PHYS 2425 and MATH 2414).

ENGR 3320 Strength of Materials
3 Semester Credit Hours (3 Lecture Hours)
Concepts in strength of materials, stress, strain; deformation under load, direct, shear, and combined stresses; stress concentrations, bending stresses and torsional shear stresses, deflection in beams and shafts, columns, and pressure vessels.
Prerequisite: ENGR 2325 and 3322 or ENGR 2322.

ENGR 3322 Materials Science
3 Semester Credit Hours (3 Lecture Hours)
Structure and properties of metallic and nonmetallic materials; microstructure, mechanical testing, phase diagrams, heat treatment, testing, ceramics, polymers, composites, construction materials, failure analysis, nondestructive evaluation, corrosion and thermal properties of materials.
Prerequisite: (CHEM 1411) and (PHYS 2425).
Co-requisite: SMTE 0099.

ENGR 3350 Manufacturing Processes
3 Semester Credit Hours (2 Lecture Hours, 3 Lab Hours)
Introduction to metal and non-metallic manufacturing processes; casting, forging, rolling, extrusion, sheet metal forming, cutting tools turning and milling operations, abrasive machining, welding and joining, powder compaction, molding, forming of plastics, surface treatment, human factors and safety.
Prerequisite: ENGR 1312, 3320 and 2326.

ENGR 4240 Project Management
2 Semester Credit Hours (2 Lecture Hours, 2 Lab Hours)
Foundations of engineering economy, cash flow and equivalence, and project justification. Introduction to project management, planning, scheduling, and control, use of project management software, Gantt charts, critical path, and critical path. Students prepare proposals, including specifications, timelines, schedule and budget, for projects to be implemented in ENGR 4370 - Capstone Projects. This course should be taken the semester preceding ENGR 4370 - Capstone Projects.
Prerequisite: (MEEN 3330) and (MEEN 3345) or (EEEN 3330) or (EEEN 3310) and (EEEN 3350).
Co-requisite: SMTE 0099.

ENGR 4350 Machine Vision and Image Processing Applications
3 Semester Credit Hours (3 Lecture Hours)
Introduces students to automated vision systems and components, camera models, testing and measurement, and fundamentals of image processing. Topics include image analysis and processing in binary, gray scale and color images in spatial- and frequency-domain, texture and shape analysis, hyperspectral imaging, other transforms, and filters are discussed and applied.
Prerequisite: (COSC 1330 or 1435) and ENGR 2460 and MATH 2414.

ENGR 4370 Capstone Projects
3 Semester Credit Hours (1 Lecture Hour, 5 Lab Hours)
This course allows students to employ the knowledge attained in other courses to implement (including building, testing, and documenting) an approved project, within budget and on schedule. Course requirements include a written report and oral presentations.
Prerequisite: (ENGR 4240) and (MEEN 4360)* or (MEEN 4365)* or (EEEN 4333), (COSC 4304) or (EEEN 4310)*.
* May be taken concurrently.
Co-requisite: SMTE 0099.

ENGR 4390 Special Topics in Engineering
1,3 Semester Credit Hours (1,3 Lecture Hours)
Subject material variable. May be repeated for credit when topics are different.
ENGR 4420 Engineering Lab Measurements
4 Semester Credit Hours (2 Lecture Hours, 4 Lab Hours)
PRINCIPLES OF PHYSICAL MEASUREMENTS; STANDARDS, CALIBRATION, ERROR ESTIMATION; STATIC AND DYNAMIC PERFORMANCE OF MEASURING SYSTEMS; LABORATORY EXPERIENCE, EXPERIMENT PLANNING, REPORT WRITING. THE PURPOSE OF THIS COURSE IS FOR STUDENTS TO GAIN PROFICIENCY IN DESIGNING, ASSEMBLING, AND OPERATING AN EXPERIMENT; AND ANALYZING AND PRESENTING EXPERIMENTAL RESULTS. THIS ENCOMPASSES SKILLS SUCH AS AN UNDERSTANDING CONTROL AND DATA ACQUISITION ELECTRONICS, OPERATION AND LIMITATION OF MODERN SENSORS, CALIBRATION AND ERROR ANALYSIS, ASSESSING APPLICABILITY OF THEORY AND THE IMPACT OF SECONDARY EXPERIMENTAL VARIABLES, AND WRITING AND PREsentING REPORTS AND ANALYSIS. OFFERED FALL AND SPRING.
Prerequisite: ENGR 2460.
Co-requisite: SMTE 0099.

ENGR 4444 Engineering Measurements
4 Semester Credit Hours (3 Lecture Hours, 3 Lab Hours)
A VERY SIGNIFICANT PART OF DESIGNING ELECTRONIC INSTRUMENTS INVOLVES SELECTING THE APPROPRIATE PHYSICAL DEVICES TO TRANSLATE QUANTITIES TO BE MEASURED INTO VOLTAGES OR CURRENTS THAT CAN BE SENSED WITH ELECTRONIC CIRCUITS. THE RANGE OF SENSORS AND TRANSDUCERS AVAILABLE WILL BE STUDIED WITH EXAMPLES FROM INDUSTRY AND MEDICAL INSTRUMENTATION. THE COURSE WILL EXPLORE IN SOME DETAIL THE USE OF ANALOG TO DIGITAL (A/D) AND DIGITAL TO ANALOG (D/A) CONVERTERS AND THEIR APPLICATIONS. STUDENTS WILL ALSO LEARN TO USE COMPLETE A/D-MICROPROCESSOR-D/A SYSTEMS SINCE THESE ARE PART OF NEARLY ALL INSTRUMENTS NOW. IN THIS COURSE STUDENTS WILL LEARN TO BUILD A COMPLETE INSTRUMENT BY COMBINING ANALOG AND DIGITAL COMPONENTS AND USING ADVANCED ALGORITHMS. WE WILL REVIEW THE BASIC CONCEPTS FROM ANALOG ELECTRONICS AND REAL-TIME EVENT DRIVEN PROGRAMMING ONE NEEDS TO UNDERSTAND IN ORDER TO CONSTRUCT SUCH INSTRUMENTS AND EXPERIMENT THROUGH A SERIES OF LABS.
Prerequisite: (EEEN 2306 and 3315).
Co-requisite: SMTE 0099.

Industrial Engineering Courses

IEEN 2302 Engineering Economics
3 Semester Credit Hours (3 Lecture Hours)
(3:0) ENGINEERING MANAGEMENT RELIES ON THE KNOWLEDGE OF ENGINEERING ECONOMICS TO BE ABLE TO EVALUATE PROJECTS FROM A FINANCIAL PERSPECTIVE. OPTIMIZING FINANCIAL PERFORMANCE OF A PROJECT IS A KEY RESPONSIBILITY OF THE ENGINEER IN THE DECISION-MAKING PROCESS. EXAMPLES OF ENGINEERING PROJECTS WOULD INCLUDE BUT NOT LIMITED TO EQUIPMENT REPLACEMENT ANALYSIS, PLANNING A NEW PRODUCT LINE, AND WASTE MANAGEMENT. THIS COURSE IS DESIGNED TO PRESENT ENGINEERING STUDENTS THE MAJOR CONCEPTS AND TECHNIQUES OF ENGINEERING ECONOMIC ANALYSIS THAT ARE NEEDED IN THE DECISION-MAKING PROCESS. THE EMPHASIS OF THIS COURSE IS ON THE ANALYTICAL ANALYSIS OF MONEY AND ITS IMPACT ON DECISION MAKING.

IEEN 3302 Operations Research
3 Semester Credit Hours (3 Lecture Hours)
INTRODUCTION TO OPERATIONS RESEARCH, LINEAR PROGRAMMING, DUALITY, OTHER ALGORITHMS FOR LINEAR PROGRAMMING, THE TRANSPORTATION AND ASSIGNMENT PROBLEMS, DYNAMIC PROGRAMMING, INTEGER PROGRAMMING; OFFERED: FALL AND SPRING.
Prerequisite: MATH 2414.
Co-requisite: MATH 3311.

IEEN 3320 Human Factors
3 Semester Credit Hours (3 Lecture Hours)
The principles of engineering, social, and technical analysis. Topics will include usability and affordances, direct manipulation, systematic design methods, user conceptual models and interface metaphors, design languages and genres, human cognitive models, physical ergonomics, information and interactivity structures, and design tools and environments. Offered: Fall and Spring.

IEEN 3324 Human Computer Interface
3 Semester Credit Hours (3 Lecture Hours)
The emphasis of this course is the design of the human-computer interface. The fundamental concepts of human-computer interaction and user centered design thinking are taught, through working in teams on an interaction design project, supported by lectures, readings, and discussions. The variety of evaluation methods and design principles of usable and appropriate computer interfaces are introduced based on psychological, social, and technical analysis. Topics will include usability and affordances, direct manipulation, systematic design methods, user conceptual models and interface metaphors, design languages and genres, human cognitive models, physical ergonomics, information and interactivity structures, and design tools and environments. Offered: Fall and Spring.

IEEN 3330 Robotics and Automation
3 Semester Credit Hours (3 Lecture Hours)
This course covers topics of concepts, principles, and relationships of automated assembly devices, computer-aided drafting/design (CADD), computer-aided manufacturing (CAM), industrial robots, numerical control (NC), industrial lasers, programmable logic controllers (PLCs), automated guided vehicles (AGVs), flexible manufacturing systems (FMS), and computer-aided manufacturing (CIM). Offered: Fall and spring.
IEEN 4310 Process Engineering
3 Semester Credit Hours (3 Lecture Hours)
THIS COURSE COVERS INTRODUCTION TO SOFTWARE DESIGN PARADIGMS, SYSTEM AND SOFTWARE REQUIREMENTS, COMPUTER AIDED SOFTWARE ENGINEERING, AND SOFTWARE DESIGN FUNDAMENTALS USING EXISTING DOCUMENTATION FOR A PROPOSED SYSTEM. RELEVANT TOPICS INCLUDE IN-DEPTH SURVEY OF DATA FLOW-ORIENTED, OBJECT-ORIENTED, DATA-ORIENTED, AND REAL-TIME DESIGN. TEAM PROJECT INVOLVING THE IMPLEMENTATION OF THE PROPOSED SYSTEM USING STRUCTURED PROGRAMMING, INFORMATION HIDING, AND STRENGTH AND COUPLING MEASURES IS REQUIRED. EACH STUDENT WILL BE REQUIRED TO MAKE AN ORAL PRESENTATION AS PART OF THE TEAM PROJECT. OFFERED: FALL.

IEEN 4312 Experimental Design and Analysis
3 Semester Credit Hours (3 Lecture Hours)
MAIN COVERAGE: BASIC PRINCIPLES OF EXPERIMENTAL DESIGN; RANDOMIZATION; COMPLETELY RANDOMIZED DESIGN; PAIRED DESIGN; RANDOMIZED BLOCKS, LATIN SQUARES, GRECO-LATIN SQUARES AND RELATED DESIGNS; FACTORIAL DESIGN; BLOCKING IN FACTORIAL DESIGN; 2K FACTORIAL DESIGN; EXTENSION OF 2K FACTORIALS; BLOCKING AND CONFOUNGING IN 2K FACTORIALS; PARTIAL CONFOUNDING; FRACTIONAL FACTORIAL DESIGNS; BLOCKING IN FRACTIONAL FACTORIALS; NESTED AND SPLIT-PLOT DESIGNS; REPlicated AND UN-REPLICATED DESIGNS; REGRESSION, ANOVA, AND FOLLOW-UP ANALYSIS; SAMPLE SIZE DETERMINATION; RESPONSE SURFACE MODEL. OFFERED: FALL AND SPRING.

IEEN 4322 Cognitive Ergonomics
3 Semester Credit Hours (3 Lecture Hours)
THIS COURSE IS CONCERNED WITH MENTAL PROCESSES, SUCH AS PERCEPTION, DECISION MAKING, MEMORY, REASONING, AND RESPONSE EXECUTION, AS THEY AFFECT INTERACTIONS AMONG HUMANS AND OTHER ELEMENTS OF A WORK SYSTEM. RELEVANT TOPICS INCLUDE SKILLED PERFORMANCE, ATTENTION, DISTRACTION, HUMAN ERROR, WORK STRESS, RISK PERCEPTION, AND KANSEI ENGINEERING AS THESE MAY RELATE TO HUMAN-SYSTEM DESIGN, SAFETY AND PRODUCTIVITY. ASSESSMENT METHODOLOGIES INCLUDE HIERARCHICAL TASK ANALYSIS, COGNITIVE TASK ANALYSIS, MENTAL WORKLOAD, HUMAN ERROR IDENTIFICATION/ACCIDENT INVESTIGATION, AND SITUATION AWARENESS ASSESSMENT. OFFERED: FALL.

IEEN 4324 Human Factors and Autonomous Systems
3 Semester Credit Hours (3 Lecture Hours)
THIS COURSE INTRODUCES THE SURVEY OF HUMAN FACTORS AND ERGONOMICS WITH PARTICULAR REFERENCE TO HUMAN FUNCTIONS IN HUMAN-MACHINE SYSTEMS AND PRINCIPLES OF HUMAN FACTORS TO DEMONSTRATE AND APPLY A BROAD KNOWLEDGE OF VARIOUS MODERN INDUSTRIAL ENGINEERING METHODS AND TOOLS ASSOCIATED WITH DESIGNING AUTONOMOUS SYSTEMS IN MANUFACTURING AND OTHER RELATED FIELDS. APPLICATIONS OF ENGINEERING DESIGN METHODS TO REPRESENT, INTEGRATE AND SOLVE PROBLEMS, INCLUDING THE ABILITY TO RECOGNIZE PROBLEM contexts AND INTEGRATE KNOWLEDGE AND SKILLS APPROPRIATE SOURCES ARE PROVIDED. KNOWLEDGE OF BASIC HUMAN CAPABILITIES AND THE WAYS THAT THESE CAPABILITIES ARE TAKEN INTO ACCOUNT IN THE DESIGN OF HUMAN-MACHINE SYSTEMS AND WORK ENVIRONMENTS. OFFERED: FALL.

IEEN 4326 Airborne Design of Experiments
3 Semester Credit Hours (3 Lecture Hours)
DEFINITIONS, CONCEPTS, AND HISTORY, AVIATION HUMAN FACTORS, MANAGEMENT, AND THE ORGANIZATION, HUMAN PERFORMANCE IN AVIATION OPERATIONS, HUMAN INFORMATION PROCESSING AND OPERATIONAL DECISION-MAKING, HUMAN ERROR AND THREAT MANAGEMENT, THREAT AND ERROR MANAGEMENT (TEM) IN FLIGHT OPERATIONS, AIR TRAFFIC CONTROL AND CABIN OPERATIONS, RESOURCE MANAGEMENT TRAINING ON THE FLIGHT DECK AND IN AIR TRAFFIC CONTROL, AUTOMATION IN THE WORKPLACE, THE DESIGN OF STANDARD OPERATING PROCEDURES (SOPs) AND CHECKLISTS. OFFERED: FALL AND SPRING.

IEEN 4330 Digital Systems Simulation
3 Semester Credit Hours (2 Lecture Hours, 2 Lab Hours)
INTRODUCTION (DEFINITIONS AND TYPES OF SIMULATIONS), MECHANISM OF DISCRETE EVENT SIMULATION, RANDOM NUMBER/VARIATE GENERATION, INPUT DATA ANALYSIS (INPUT DISTRIBUTION MODELING), SIMULATION MODELING USING ARENA PACKAGE, REVIEW OF PROBABILITY AND STATISTICS, SIMULATION OUTPUT ANALYSIS, MONTE CARLO SIMULATION, MODELING CONTINUOUS PROCESSES, VERIFICATION AND VALIDATION OF SIMULATION MODELS, READ/WRITE SIMULATION DATA FROM/TO EXTERNAL FILES. OFFERED: FALL AND SPRING.

IEEN 4332 Distribution Center Design and Operation
3 Semester Credit Hours (3 Lecture Hours)
INTRODUCTION (ISSUES, EQUIPMENT, PROCESSES), LAYOUT, ORDER-PICKING, AUTOMATION, SPECIAL TOPICS: CROSSDOCKING, WAREHOUSE PERFORMANCE. OFFERED: FALL AND SPRING.

IEEN 4334 Scheduling and Sequencing
3 Semester Credit Hours (3 Lecture Hours)
INTRODUCTION AND OVERVIEW, EOQ MODELS, MRP, JOB SHOP SCHEDULING RULES & GANTT CHART, ALGORITHMS FOR ONE MACHINE PROBLEMS, IMPLICIT ENUMERATIONS & DYNAMIC PROGRAM, BRANCH AND BOUND, HEURISTICS APPROACHES, PROJECT SCHEDULING, PARALLEL MACHINE SCHEDULING, RELAXATION OF ASSUMPTIONS, BATCH PROCESSING, SEQUENCE DEPENDENCE, PROJECT PRESENTATIONS. OFFERED: FALL AND SPRING.

IEEN 4342 Construction Management
3 Semester Credit Hours (3 Lecture Hours)
THE COURSE Focuses ON MANAGEMENT TECHNIQUES TO SOLVE THE UNIQUE PROBLEMS ASSOCIATED WITH A CONSTRUCTION PROJECT. STUDY OF CONSTRUCTION MANAGEMENT FUNCTIONS INCLUDING PROJECT MANAGEMENT, COST MANAGEMENT, TIME MANAGEMENT, QUALITY MANAGEMENT, CONTRACT ADMINISTRATION, AND SAFETY MANAGEMENT WILL BE COVERED. EMPHASIS IS PUT ON THE APPLICATION OF EACH FUNCTION THROUGHOUT THE PROJECT PHASES. OFFERED: SPRING.

IEEN 4396 Directed Independent Study
1-3 Semester Credit Hours
REQUIRES A FORMAL PROPOSAL OF STUDY TO BE COMPLETED IN ADVANCE OF REGISTRATION. APPROVAL OF SUPERVISING FACULTY AND DEPARTMENT CHAIRPERSON. OFFERED FALL, SPRING, AND SUMMER.