MECHANICAL ENGINEERING TECHNOLOGY, BS

Program Description
The Engineering Technology Council of the American Society for Engineering Education defines Engineering Technology as the profession in which knowledge of mathematics and natural sciences gained by higher education, experience, and practices is devoted primarily to the implementation and extension of existing technology for the benefit of humanity. Engineering technology focuses on the applied aspects of science and engineering to prepare graduates for practice in product improvement, manufacturing, and engineering operational functions. Engineering technologists are suited for industries that deal with application, manufacturing, implementation, engineering operation, sales, and production.

The Mechanical Engineering Technology degree is offered in both the traditional face-to-face format and an online format for the upper-division courses. The fully-online courses form a competency-based education program in which students receive credit for courses when specific competencies are demonstrated, and receive the degree when all degree-level competencies are demonstrated. In some cases, students may be able to take traditional courses for credit in the competency-based education program.

The goal of Engineering Technology is to prepare well educated, highly skilled, and socially and professionally responsible engineering technologists from a diverse population of students to create productive and rewarding careers. Graduates will be well grounded in the fundamentals of engineering, mathematics, science, communications, and problem solving. To create continuous improvement, the program uses input from employers, alumni, and the Industrial Advisory Committee. Engineering Technology is accredited by the Engineering Technology Accreditation Commission (ETAC) of ABET, www.abet.org (http://www.abet.org).

Contact Information
Engineering Technology Program, Texas A&M University-Corpus Christi, Corpus Christi, TX 78412-5797. Phone: (361) 825-5849. Web: http://entc.tamucc.edu/

Mechanical Engineering Technology
Mechanical Engineering Technology graduates will exemplify the attributes previously described.

Student Learning Outcomes
By the time of graduation, students in the Mechanical Engineering Technology program will have demonstrated

1. an ability to apply knowledge, techniques, skills and modern tools of mathematics, science, engineering, and technology to solve broadly-defined engineering problems appropriate to the discipline;
2. an ability to design systems, components, or processes meeting specified needs for broadly-defined engineering problems appropriate to the discipline;
3. an ability to apply written, oral, and graphical communication in broadly-defined technical and non-technical environments; and an ability to identify and use appropriate technical literature;
4. an ability to conduct standard tests, measurements, and experiments and to analyze and interpret the results to improve processes; and
5. an ability to function effectively as a member as well as a leader on technical teams.

Program Educational Objectives
1. Within two years of graduation from TAMU-CC, our graduates who have chosen to pursue a career in mechanical engineering technology or a related field will be working in industry, government, construction, or other professional service in the areas of design, manufacture, sales, installation, operation and/or maintenance of complex, high-value systems.
2. Within five years of graduation from TAMU-CC our graduates who have chosen to pursue a career in mechanical engineering technology or a related field will have
 - advanced in their careers as indicated by obtaining promotions and positions of leadership, awards, recognitions as subject matter experts, and/or registration as professional engineers or in other professional disciplines; or by entrepreneurial activities, products or processes developed, or patents;
 - demonstrated the ability to increase their knowledge and expertise through continuing education or advanced degrees; and
 - contributed to the improvement of the profession and of society through participation and service in professional and public organizations and through mentoring.

Competency-Based Education Program for BS Mechanical Engineering Technology (CBE MCET)
A competency-based education (CBE) program is one in which specific, concrete competencies are defined. The top-level competencies are the ABET student learning outcomes listed above. Subject-specific sub-competencies are identified and assessed in each of the CBE MCET courses. When a student demonstrates the competencies for a specific course, the student passes the course. When all of the competencies for the degree have been demonstrated, the student receives the degree. The CBE MCET program is being offered for the upper-division (3000- and 4000-level) courses. Once a student has completed the first two years of the traditional MCET BS program as described below, the student may opt for the CBE MCET program. Each of the courses in the CBE MCET program, with the exception of certain laboratory classes described below, may be completed online.

A student must apply for the CBE program in MCET. The student
 - Must be admitted as a student to TAMU-CC.
 - Must indicate a positive decision to apply for the CBE MCET program, either through ApplyTexas or a change of major form if student is already at TAMU-CC.
 - Must have completed all core courses and all lower-division courses as listed below under “Prior Course Completion.”
 - Must have a 2.5 GPA in all coursework that applies to the program (core courses and lower-division courses that will be counted towards the program), whether taken at TAMU-CC or elsewhere.
Credit By Examination: Some courses will have an online pre-test that students can take to earn college credit for that course. The test will be the equivalent of a comprehensive final exam that will test students on all competencies related to the course. The pre-test will be proctored according to the same standard as all other tests taken in the course. If students pass the pre-test, they will receive credit and not be required to take the course. The fee for taking the pre-test in each course must be paid by the student and may range up to $300 per exam. The student should contact the office of the Department of Engineering or the Office of Distance Education and Learning Technologies at TAMU-CC to determine the exact cost of the pre-test.

Credit By Portfolio: For the courses listed below, it is possible that through experience on the job (such as running a process unit in a plant or working in a machine shop), the student might have acquired the competencies in a particular course and therefore be able to obtain credit by submitting examples of work, certified by a supervisor, that illustrate the competencies in the course. The competencies for these courses may be found on the program website, and students given the opportunity to submit portfolios for evaluation (at the cost of an evaluation fee up to $300). The supervisor must be approved by the Engineering faculty as having the necessary qualifications to validate the work submitted by the student. The portfolio(s) submitted by the student must demonstrate that the student has mastered the competencies in the class, as published on the program website.

Because of the nature of the last two courses, credit by portfolio must be obtained for both courses and cannot be obtained for each course individually.

Student Learning Outcomes
The student learning outcomes for the CBE MCET program are the same as for the traditional BS in MCET. These student outcomes will be met by the demonstration of specific competencies in each of the courses in the CBE MCET program.

General Requirements
A summary of the hours necessary for graduation follows:

The specific requirements for each aspect of the Bachelor of Science degree in Mechanical Engineering Technology are indicated below.

Required Engineering and Mechanical Engineering Technology Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNIV 1101</td>
<td>University Seminar I</td>
<td>1</td>
</tr>
<tr>
<td>UNIV 1102</td>
<td>University Seminar II</td>
<td>1</td>
</tr>
</tbody>
</table>

Core Curriculum Program

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2413</td>
<td>Calculus I (3-hour lecture math component)</td>
<td></td>
</tr>
<tr>
<td>PHYS 2425</td>
<td>University Physics I (3-hour lecture natural science component)</td>
<td></td>
</tr>
<tr>
<td>PHYS 2426</td>
<td>University Physics II (3-hour lecture natural science component)</td>
<td></td>
</tr>
<tr>
<td>MATH 2414</td>
<td>Calculus II (3-hour lecture component area option)</td>
<td></td>
</tr>
</tbody>
</table>

Fundamental Science, Math, and Engineering Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2413</td>
<td>Calculus I (1 hour laboratory component)</td>
<td></td>
</tr>
<tr>
<td>PHYS 2425</td>
<td>University Physics I (1 hour laboratory component)</td>
<td></td>
</tr>
<tr>
<td>PHYS 2426</td>
<td>University Physics II (1 hour laboratory component)</td>
<td></td>
</tr>
<tr>
<td>MATH 2414</td>
<td>Calculus II (1 hour laboratory component)</td>
<td>1</td>
</tr>
<tr>
<td>ENGR 1201</td>
<td>Introduction to Engineering</td>
<td>2</td>
</tr>
<tr>
<td>ENGR 1312</td>
<td>Engineering Graphics I</td>
<td>3</td>
</tr>
<tr>
<td>COSC 1330</td>
<td>Programming for Scientists, Engineers, and Mathematicians</td>
<td></td>
</tr>
<tr>
<td>CHEM 1411</td>
<td>General Chemistry I</td>
<td>4</td>
</tr>
</tbody>
</table>

Required Engineering and Mechanical Engineering Technology Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 2325</td>
<td>Statics</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 2326</td>
<td>Dynamics</td>
<td>3</td>
</tr>
</tbody>
</table>
ENGR 2460 Circuit Analysis 4
ENGR 3316 Thermodynamics 3
ENGR 3322 Materials Science 3
ENTC 3302 Manufacturing Processes 3
or ENGR 3350 Manufacturing Processes 3
ENTC 3220 Thermal-Fluids Laboratory 2
ENTC 3306 Fluid Mechanics 3
or ENGR 3315 Fluid Mechanics 3
ENTC 3308 Strength of Materials 3
or ENGR 3320 Strength of Materials 3
ENTC 3455 Solid Modeling and Finite Elements 4
ENTC 4210 Solid Mechanics Laboratory 2
ENTC 4320 Heat Transfer 3
ENTC 4330 Design of Machine Elements 3
ENTC 4360 Mechanical System Design 3
ENTC 4446 Control Systems I 4
ENTC 4415 Project Justification and Management 4
ENTC 4350 Capstone Projects 3

Technical Electives

Four courses or 12-13 sem. hrs. 12-13

Students choose one from any upper-division (3000-level or 4000-level) 3-hour credit Math, Science, or Engineering courses.

Students must complete at least 9 hours of technical elective courses. These may include any upper-division (3000-level or 4000-level) Engineering (CEEN, EEEN, IEEN, MEEN) or Engineering Technology (ENTC) courses outside of the required courses in the Mechanical Engineering Technology degree plan, or any 4000-level MATH, COSC, BIOL, CHEM, or PHYS courses.

Total Hours

122-123

Engineering Technology students must take two courses in Physics even if the natural science portion of the core curriculum is satisfied by other means. Students transferring to A&M-Corpus Christi from other institutions may have various means for fulfilling the core curriculum. Please refer to the "General Education Requirement" in the catalog section entitled "Undergraduate Programs" for instructions on obtaining the required courses.

Competency-Based Education Program for BS Mechanical Engineering Technology (CBE MCET)

Prior Course Completion

A student must apply for admission to the CBE MCET program. Prior to being admitted to the program, the student must complete all TAMU-CC core curriculum requirements and the following courses or their equivalents (those courses which satisfy the core requirements for mathematics, life and physical sciences, and the component area option (CAO) are also listed, for completeness).

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1411</td>
<td>General Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 1201</td>
<td>Introduction to Engineering</td>
<td>2</td>
</tr>
<tr>
<td>ENGR 1312</td>
<td>Engineering Graphics I</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 2325</td>
<td>Statics</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 2326</td>
<td>Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>ENTC 2414</td>
<td>Circuit Analysis I</td>
<td>4</td>
</tr>
<tr>
<td>or ENGR 2460</td>
<td>Circuit Analysis</td>
<td></td>
</tr>
<tr>
<td>MATH 2413</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 2414</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2425</td>
<td>University Physics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2426</td>
<td>University Physics II</td>
<td>4</td>
</tr>
<tr>
<td>COSC 1330</td>
<td>Programming for Scientists, Engineers, and Mathematicians</td>
<td>3</td>
</tr>
</tbody>
</table>

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTC 3306</td>
<td>Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>ENTC 3308</td>
<td>Strength of Materials</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 3316</td>
<td>Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 3322</td>
<td>Materials Science</td>
<td>3</td>
</tr>
<tr>
<td>ENTC 3455</td>
<td>Solid Modeling and Finite Elements</td>
<td>4</td>
</tr>
<tr>
<td>ENTC 4210</td>
<td>Heat Transfer</td>
<td>3</td>
</tr>
<tr>
<td>ENTC 4330</td>
<td>Design of Machine Elements</td>
<td>3</td>
</tr>
<tr>
<td>ENTC 4360</td>
<td>Mechanical System Design</td>
<td>3</td>
</tr>
<tr>
<td>ENTC 4446</td>
<td>Control Systems I</td>
<td>4</td>
</tr>
<tr>
<td>ENTC 4415</td>
<td>Project Justification and Management</td>
<td>4</td>
</tr>
<tr>
<td>ENTC 4450</td>
<td>Capstone Projects</td>
<td>3</td>
</tr>
</tbody>
</table>

Chemical Process Industry Elective Block - CBE

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTC 4331</td>
<td>Unit Processes</td>
<td>3</td>
</tr>
<tr>
<td>ENTC 4332</td>
<td>Process Modeling and Control</td>
<td>3</td>
</tr>
<tr>
<td>ENTC 4333</td>
<td>Chemical Reaction Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENTC 4335</td>
<td>Energy Conversion</td>
<td>3</td>
</tr>
</tbody>
</table>

On-Campus Block

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTC 3220</td>
<td>Thermal-Fluids Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>ENTC 3302</td>
<td>Manufacturing Processes</td>
<td>3</td>
</tr>
<tr>
<td>ENTC 4210</td>
<td>Solid Mechanics Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>ENTC 4350</td>
<td>Capstone Projects</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Hours

55

1

2

3
Because of their nature, these courses must be completed in a traditional face-to-face format on campus or have a face-to-face component, if credit is not obtained by portfolio (see above). The two lab classes will be taught during the same five-week summer school term, in the first term of the summer. ENTC 3302 Manufacturing Processes (3 sch) and ENTC 4350 Capstone Projects (3 sch) courses will be taught as hybrids, with online and face-to-face components. The face-to-face laboratory component of ENTC 3302 Manufacturing Processes (3 sch) will be taught during a five-week summer term. Because of the team nature of capstone projects, the online CBE version of ENTC 4350 Capstone Projects (3 sch) will last 14 weeks and will be synchronized with spring and fall semester offerings of the traditional face-to-face version of ENTC 4350 Capstone Projects (3 sch). The capstone project in ENTC 4350 Capstone Projects (3 sch) will be completed as subsystems by subgroups or individuals off campus and integrated on campus at the end of the semester, with arrangements made for team presentations.

Course Sequencing

First Year

Fall
ENGL 1301 Writing and Rhetoric I 3
HIST 1301 U.S. History to 1865 3
UNIV 1101 University Seminar I 1
MATH 2413 Calculus I 4
CHEM 1411 General Chemistry I 4
ENGR 1201 Introduction to Engineering 2

Hours 17

Spring
ENGL 1302 Writing and Rhetoric II 3
HIST 1302 U.S. History Since 1865 3
UNIV 1102 University Seminar II 1
MATH 2414 Calculus II 4
ENGR 1312 Engineering Graphics I 3
PHYS 2425 University Physics I 4

Hours 18

Second Year

Fall
ENGR 2325 Statics 3
POLS 2305 U.S. Government and Politics 3
PHYS 2426 University Physics II 4
COSC 1330 Programming for Scientists, Engineers, and Mathematicians 3
Creative Arts Core Requirement 3

Hours 16

Spring
ENGR 2326 Dynamics 3
ENTC 3320 Thermodynamics 3
ENGR 3322 Materials Science 3
ENGR 2460 Circuit Analysis 4

Fourth Year

Fall
ENTC 4415 Project Justification and Management 4
Technical elective for MCET 3
Technical elective for MCET 3
Upper Level Math, Science or Engineering Elective 3
ENTC 4360 Mechanical System Design 3

Hours 16

Spring
ENTC 4350 Capstone Projects 3
Technical elective for MCET 3
Language, Philosophy & Culture Core Requirement 3
Social and Behavioral Sciences Core Requirement 3

Hours 12

Total Hours 122

Courses

ENTC 2414 Circuit Analysis I
4 Semester Credit Hours (3 Lecture Hours, 3 Lab Hours)
Fundamental aspects of DC circuit analysis: charge, voltage, resistance, current, and power; Ohm's Law; methods of analysis; series and parallel circuits; Kirchhoff's voltage and current laws; Thevenin and Norton Theorems; electrical measurement; instruments; and use of analysis software. Offered: Fall/Spring.
Prerequisite: MATH 2413.
Co-requisite: PHYS 2426, SMTE 0099.
TCCNS: ENGT 1401

ENTC 2490 Special Topics
1-4 Semester Credit Hours (1-4 Lecture Hours, 3 Lab Hours)
Subject material variable. May be repeated for different topics.
ENTC 3320 Thermal-Fluids Laboratory
2 Semester Credit Hours (4 Lab Hours)
Application of measurement instrumentation and experimental techniques utilized in thermodynamics and fluid mechanics. Experiments and project in hydrostatics, hydrodynamics, and thermodynamics. Offered in Spring.
Prerequisite: (ENTC 3306 and 3320*).
* May be taken concurrently.
Co-requisite: SMTE 0099.

ENTC 3302 Manufacturing Processes
3 Semester Credit Hours (2 Lecture Hours, 3 Lab Hours)
Introduction to metal and non-metallic manufacturing processes; casting, forging, rolling, extrusion, sheet metal forming, cutting tools turning and milling operations, abrasive machining, welding and joining, powder compaction, molding, forming of plastics, surface treatment, human factors and safety. Offered: Fall (Spring as needed).
Prerequisite: ENGR 1312 and 3322.
Co-requisite: SMTE 0099.

ENTC 3306 Fluid Mechanics
3 Semester Credit Hours (3 Lecture Hours)
Fluid properties, fluid statics, dynamics, and kinematics, conservation of energy and momentum incompressible, laminar and turbulent flow. Similitude and dimensional analysis, and viscous flow. Offered: Fall
Prerequisite: (ENTC 2325 or ENGR 2325).

ENTC 3308 Strength of Materials
3 Semester Credit Hours (3 Lecture Hours)
Concepts in strength of materials, stress, strain; torsion; deformation under load; direct, shear, and combined stresses; shear and moment diagrams; Mohr's circle; stress concentrations, bending stresses and torsional shear stresses, deflection in beams and shafts; columns, connections, and pressure vessels. Offered: Fall (Spring as needed).
Prerequisite: (ENTC 2325 or ENGR 2325) and (ENTC 3410).

ENTC 3322 Thermodynamics
3 Semester Credit Hours (3 Lecture Hours)
Theory and application of energy methods in engineering; conservation of mass and energy; energy transfer by heat, work and mass; thermodynamic properties; analysis of open and closed systems; the second law of thermodynamics and entropy; gas, vapor and refrigeration cycles. Offered: Fall/Spring.
Prerequisite: PHYS 2425 and MATH 2414.

ENTC 3323 Robotics and Automation
3 Semester Credit Hours (2 Lecture Hours, 3 Lab Hours)
Automation in a manufacturing and assembly setting, material handling systems, remote guided vehicles, automated storage and retrieval systems, computer numerical machine tools, robotics. Offered: Spring.
Prerequisite: ENTC 3415.
Co-requisite: SMTE 0099.

ENTC 3350 Human Factors Engineering
3 Semester Credit Hours (3 Lecture Hours)
Application of human factors engineering principles utilized in mechanical system and product design. Overview of human characteristics and research and design techniques.
Prerequisite: (ENTC 3302 or 3302*).
* May be taken concurrently.

ENTC 4333 Chemical Reaction Engineering
3 Semester Credit Hours (3 Lecture Hours)
Fundamental principles of chemical reaction engineering and application to design and analysis of basic chemical reactors containing both homogeneous and heterogeneous reactions. Offered Fall and Spring.
Prerequisite: ENTC 4331 and 4332.

ENTC 4355 Solid Modeling and Finite Elements
4 Semester Credit Hours (3 Lecture Hours, 3 Lab Hours)
Use of computer aided design and solid modeling tools in engineering design and manufacturing including: solid modeling, stress, flow and heat transfer analysis using finite element methods, and rapid prototyping. Offered: Spring.
Prerequisite: ENTC 3308.

ENTC 3415 Process Modeling and Control
3 Semester Credit Hours (3 Lecture Hours)
Prerequisite: ENTC 4320.

ENTC 4322 Programmable Logic Controllers
3 Semester Credit Hours (2 Lecture Hours, 3 Lab Hours)
Introduction to PLCs and their use in industrial automation. Topics include programming, counters, timers, interrupts, and process control applications. Offered: As needed.
Prerequisite: ENTC 3416.
Co-requisite: SMTE 0099.

ENTC 3430 Design of Machine Elements
3 Semester Credit Hours (3 Lecture Hours)
Stress analysis of deformable bodies and mechanical elements; stress transformation; combined loading; failure modes; material failure theories; fracture and fatigue; deflections and instabilities; thick cylinders; curved beams; design of structural/mechanical members; design processes for shafts, bearings, springs, fasteners, and mechanical joints.
Prerequisite: ENTC 3308.

ENTC 4331 Unit Processes
3 Semester Credit Hours (3 Lecture Hours)
Principles and methods for staged separation processes including distillation, absorption and stripping, extraction, and adsorption systems. Offered in Fall and Spring
Prerequisite: ENTC 4320.

ENTC 3308 Chemical Reaction Engineering
3 Semester Credit Hours (3 Lecture Hours)
Fundamental principles of chemical reaction engineering and application to design and analysis of basic chemical reactors containing both homogeneous and heterogeneous reactions. Offered Fall and Spring.
Prerequisite: ENTC 4331 and 4332.
ENTC 4335 Energy Conversion
3 Semester Credit Hours (2 Lecture Hours, 3 Lab Hours)
Installation, design characteristics, operational performance, and
maintenance of motors, turbines, pumps and compressors. Introduction
to global energy concerns; fossil and nuclear fuels; energy consumption
analysis; energy management and conservation techniques; renewable
and alternative energy sources. Modern energy conversion devices such
as fuel cells, photovoltaic cells, and micro-power turbines.
Prerequisite: ENTC 3320.

ENTC 4350 Capstone Projects
3 Semester Credit Hours (1 Lecture Hour, 5 Lab Hours)
This course allows students to employ the knowledge attained in other
courses to implement (including building, testing, and documenting) the
project approved in ENTC 4415 - Project Justification and Management,
within budget and on schedule. Course requirements include a written
report and oral presentations. Normally taken in the student’s last
semester.
Prerequisite: ENTC 4415.
Co-requisite: SMTE 0099.

ENTC 4360 Mechanical System Design
3 Semester Credit Hours (3 Lecture Hours)
Analysis, management and cost, team work, optimal design, and
computer simulation of mechanical systems and components;
Applications in fluid flow and heat transfer, machine elements, and stress
analysis. Selected course topics are assigned as projects.
Prerequisite: ENTC 4330.

ENTC 4415 Project Justification and Management
4 Semester Credit Hours (3 Lecture Hours, 2 Lab Hours)
Foundations of engineering economy, cash flow and equivalence, and
project justification. Introduction to project management, planning,
scheduling, and control, use of project management software, GANTT
charts, PERT charts, critical path. Students prepare proposals, including
specifications, timelines, schedule, and budget, for projects to be
implemented in ENTC 4350 - Capstone Projects.
Co-requisite: SMTE 0099.

ENTC 4446 Control Systems I
4 Semester Credit Hours (3 Lecture Hours, 3 Lab Hours)
Introduction to control systems; open and feedback; Laplace transform
and frequency response; control valves; electric motors; P, PI, and PID
modes of control; analog and digital controllers Process characteristics;
analysis of control systems; gain and phase margin; stability.
Prerequisite: ENTC 2414.

ENTC 4490 Selected Topics
1-4 Semester Credit Hours (1-4 Lecture Hours)
Subject material variable. May be repeated for different topics.

ENTC 4496 Directed Independent Study
1-4 Semester Credit Hours
Requires a formal proposal of study to be completed in advance of
registration, approval of supervising faculty and chairperson.