<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Description</th>
<th>Prerequisite(s)</th>
<th>Co-requisite(s)</th>
<th>TCCNS Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 1303</td>
<td>Introduction to Astronomy: Stars and Galaxies</td>
<td>3</td>
<td>This is one of two courses in the introduction to astronomy sequence which emphasizes the nature of astronomical phenomena over the mathematical analysis of them. This course will focus mostly on the nature of light, the nature and evolution of stars, the material between the stars, the Milky Way Galaxy, external galaxies, and the structure and evolution of the universe as a whole.</td>
<td></td>
<td>TCCNS: PHYS 1303</td>
<td></td>
</tr>
<tr>
<td>PHYS 1304</td>
<td>Introduction to Astronomy: Solar System</td>
<td>3</td>
<td>This is one of two courses in the introduction to astronomy sequence which emphasizes the nature of astronomical phenomena related to the Solar System such as apparent motion of the Sun, phases of the Moon and apparent and true motion of the planets. Main focus will be on the objects comprising the Solar System: planets, their moons, asteroids, comets and trans-Neptunian bodies. A portion of the course will be dedicated to the formation and development of the Solar System and other, extrasolar planetary systems. The course also will touch the aspects of human exploration of the Solar System and the role of technology in our learning and understanding of the Solar System. This includes the history and the basics of robotic and manned spaceflights. Offered every Spring and Summer.</td>
<td></td>
<td>Co-requisite: SMTE 0095.</td>
<td></td>
</tr>
<tr>
<td>PHYS 1401</td>
<td>General Physics I</td>
<td>4</td>
<td>Introduction to Newtonian physics. Topics include Aristotelian physics and its overthrow, Newton's laws of motion and gravitation, and the motion of particles, rigid bodies and fluids. The idea of the universe as a law-governed system will be developed. Laboratory activities provide introduction to empirical methods in science.</td>
<td>(MATH 1314, 1316, 1324, 1325, 2312, 2413, 2414, 2415, minimum score of 21 in 'ACT1 Math', minimum score of 500 in 'SAT Math', minimum score of 21 in 'ACT Math', minimum score of 500 in 'SAT1 Mathematics' or minimum score of 615 in 'Local Placement Test').</td>
<td>Co-requisite: SMTE 0095.</td>
<td>TCCNS: PHYS 1304</td>
</tr>
<tr>
<td>PHYS 1402</td>
<td>General Physics II</td>
<td>4</td>
<td>Introduction to oscillatory and wave phenomena, electricity and magnetism. The classical theory of fields will be used to study electric and magnetic phenomena, including light, and their role in modern technology. Laboratory activities provide introduction to empirical methods in science.</td>
<td>(PHYS 1401* or 2425*).</td>
<td>Co-requisite: SMTE 0095.</td>
<td>TCCNS: PHYS 1402</td>
</tr>
<tr>
<td>PHYS 2425</td>
<td>University Physics I</td>
<td>4</td>
<td>A calculus based introduction to Newtonian physics. Topics include Aristotelian physics and its overthrow, Newton's laws of motion and gravitation, and the motion of particles, rigid bodies, and fluids. The idea of the universe as a law-governed system will be developed. Laboratory activities provide introduction to empirical methods in science.</td>
<td>TCCNS: PHYS 2425</td>
<td>Co-requisite: SMTE 0095.</td>
<td></td>
</tr>
<tr>
<td>PHYS 2426</td>
<td>University Physics II</td>
<td>4</td>
<td>Calculus based introduction to oscillatory and wave phenomena, electricity and magnetism. The classical theory of fields will be used to study electric and magnetic phenomena, including light, and their role in modern technology.</td>
<td>TCCNS: PHYS 2426</td>
<td>Co-requisite: SMTE 0095.</td>
<td></td>
</tr>
<tr>
<td>PHYS 3331</td>
<td>Mechanics I</td>
<td>3</td>
<td>Fundamentals of classical mechanics. Topics include particle dynamics in one, two and three dimensions: conservation laws; dynamics of a system of particles; motion of rigid bodies; central force problems; accelerating coordinate systems; Newton's theory of gravitation; Lagrange's and Hamilton's formulations of classical mechanics. This course is offered through the Texas Physics Consortium (TPC). See their website (http://www.tarleton.edu/tpc/) for details.</td>
<td>(MATH 3315 or 3315*).</td>
<td>Co-requisite: PHYS 2426 and (MATH 3315 or 3315*).</td>
<td></td>
</tr>
<tr>
<td>PHYS 3332</td>
<td>Electromagnetism</td>
<td>3</td>
<td>Electrostatics; Laplace's equation; the theory of dielectrics; magnetostatic fields; electromagnetic induction; magnetic fields of currents; Maxwell's equations. This course is offered through the Texas Physics Consortium (TPC). See their website (http://www.tarleton.edu/tpc/) for details.</td>
<td>(MATH 3315 or 3315*).</td>
<td>Co-requisite: PHYS 2426 and (MATH 3315 or 3315*).</td>
<td></td>
</tr>
<tr>
<td>PHYS 3333</td>
<td>Thermodynamics</td>
<td>3</td>
<td>Concept of temperature, equations of state; the first and the second law of thermodynamics; entropy; change of phase; the thermodynamics functions. This course is offered through the Texas Physics Consortium (TPC). See their website (http://www.tarleton.edu/tpc/) for details.</td>
<td>(PHYS 2426 and (MATH 2415 or 2415*).</td>
<td>Co-requisite: PHYS 2426 and (MATH 2415 or 2415*).</td>
<td></td>
</tr>
<tr>
<td>PHYS 3334</td>
<td>Modern Physics I</td>
<td>3</td>
<td>A course in special relativity and elementary quantum mechanics. Topics include relativistic description of space-time, relativistic energy and momentum, the uncertainty principle, Schrödinger's equation, observables and operators, bound states, potential barriers, and the quantum description of the hydrogen atom. This course is offered through the Texas Physics Consortium (TPC). See their website (http://www.tarleton.edu/tpc/) for details.</td>
<td>(PHYS 2426 and (MATH 3315 or 3315*).</td>
<td>Co-requisite: PHYS 2426 and (MATH 3315 or 3315*).</td>
<td></td>
</tr>
</tbody>
</table>
PHYS 3490 Selected Topics
1-4 Semester Credit Hours (1-4 Lecture Hours)
Subject materials will be chosen from Electromagnetic Field Theory, Thermodynamics, Mathematical Methods of Physics, Waves and Optics, Advanced Modern Physics, Quantum Theory, Computational Physics, Geophysics, Environmental Physics and Medical Physics. May be repeated for credit if topics selected are different. This course will be used for upper-level physics electives offered from other Texas Physics Consortium (TPC) schools. See their website (http://www.tarleton.edu/tpc/) for details.

PHYS 4161 Physics Research Project
1 Semester Credit Hour (1 Lecture Hour)
The first half of a two semester sequence. The student will work with a faculty member to develop and conduct a senior research project including a search of the relevant literature and presentation of the proposed research idea. This course is offered through the Texas Physics Consortium (TPC). See their website (http://www.tarleton.edu/tpc/) for details.
Prerequisite: PHYS 3334.

PHYS 4162 Physics Research Seminar
1 Semester Credit Hour (1 Lecture Hour)
The second half of a two semester sequence. The student will work with a faculty member to conduct a senior research project including giving an oral presentation of the final results and writing up the results in a form suitable for publication. This course is offered through the Texas Physics Consortium (TPC). See their website (http://www.tarleton.edu/tpc/) for details.
Prerequisite: PHYS 4161.

PHYS 4330 Mathematical Methods for Physicists
3 Semester Credit Hours (3 Lecture Hours)
Mathematical techniques from the following areas: infinite series; integral transforming; applications of complex variables; vectors, matrices, and tensors; special functions; partial differential equations; Green's functions; perturbation theory; integral equations; calculus of variations; and groups and group representatives. This course offered through the Texas Physics Consortium (TPC). See their website (http://www.tarleton.edu/tpc/) for details.
Prerequisite: (MATH 3315 or 3315*).
* May be taken concurrently.

PHYS 4335 Quantum Physics
3 Semester Credit Hours (3 Lecture Hours)
The Schroedinger equation; one dimensional systems; the Heisenberg uncertainty principle; magnetic moments and angular momentum; two and three dimensional systems; approximation methods; spin. This course is offered through the Texas Physics Consortium (TPC). See their website (http://www.tarleton.edu/tpc/) for details.
Prerequisite: PHYS 3334 and (MATH 3315* or 2415*).
* May be taken concurrently.

PHYS 4337 Nuclear Physics
3 Semester Credit Hours (3 Lecture Hours)
The study of nuclear phenomena and properties including mass, stability, magnetic moment, radioactive decay processes and angular momentum. The use of nuclear techniques as applied to other scientific fields including electronics and medicine. This course is offered through the Texas Physics Consortium (TPC). See their website (http://www.tarleton.edu/tpc/) for details.
Prerequisite: PHYS 3334 and (PHYS 4335* or 4335) and (MATH 3315* or 2415*).
* May be taken concurrently.

PHYS 4340 Advanced Physics Lab
3 Semester Credit Hours (1 Lecture Hour, 4 Lab Hours)
A laboratory course focusing on experimental design, advanced data analysis and reduction, and experimental laboratory techniques and instrumentation. Experiments will be drawn from a variety of physics areas. This course is offered through the Texas Physics Consortium (TPC). See their website (http://www.tarleton.edu/tpc/) for details.
Prerequisite: (PHYS 3334 or 3334*).
* May be taken concurrently.
Co-requisite: SMTE 0095.

PHYS 4496 Directed Independent Study
1-4 Semester Credit Hours (1-4 Lecture Hours)
Requires a formal proposal of study to be completed in advance of registration and to be approved by the supervising faculty, the Chairperson, and the Dean of the College.