GEOSPATIAL SYSTEMS ENGINEERING, MS

Program Description
The Geospatial Systems Engineering Program will prepare graduates with advanced knowledge and skills focusing on research, design, development, and use of technologies in the field of geospatial systems engineering. This program satisfies regional, state, and national need for master’s-level graduates in geospatial systems engineering.

The program offers two tracks, Track 1 - Geosensing Systems and UAS for Geomatics or Track 2 - Geospatial Data Science and Analytics. Both tracks require a minimum of 30 semester-credit hours. This must include 6 semester credit hours in the geospatial systems engineering core, 9 semester credit hours in each track, and 15 semester hours in the Graduate Thesis option or the Graduate Creative Project option as described in Section II.

Objectives of the Program

Student Learning Outcomes
Graduates of the GSEN Program will:

• Develop, manage, and analyze geospatial data using spatial analysis, computational, and geomatics engineering techniques.
• Develop the capacity for continued learning, research, and professional application.
• Creatively apply geomatics engineering techniques and technologies to solve real-world problems.

Program Outcomes
Graduates of the Master of Science in Geospatial Systems Engineering will have:

1. The ability to lead teams and apply problem-solving skills that include oral and written communication skills to effectively manage geospatial information.
2. An awareness and utilization of external organizations and institutions that provide useful geospatial data sets and their relationships to traditional and contemporary societal issues.
3. A recognition of the need for continued learning and development of leadership skills through involvement in volunteer professional organizations and societies.

Chronological Procedure Leading to the MS Degree

1. Completion of a degree plan
Upon admission to the MS degree program in Geospatial Systems Engineering, and prior to enrollment in any course, the student must contact the Graduate Academic Advisor in the College of Engineering to have a degree plan completed. Students must arrange to see their advisor/mentor each semester until graduation to have their semester course schedules approved.

2. Progress toward the degree
Once admitted to the graduate degree program in Geospatial Systems Engineering, a student must complete at least six semester credit hours per year toward the degree until the degree is completed. Failure to make this minimum progress will result in dismissal from the degree program with possible readmission based on the catalog in effect at the time of re-admission. A student who is actively pursuing a Coursework Option has completed all other course work for the degree will be required to register for a Graduate Creative Project with a minimum of three credit hours continuously until the project is completed. A student who is actively pursuing a Graduate Thesis and has completed all other course work for the degree will be required to register for thesis credit hour(s) continuously until the project is completed.

3. Graduate Thesis Procedure
Students choosing the thesis option must obtain permission from their faculty advisor (who will chair their committee) to register GSEN 5397 Thesis I: Thesis Proposal (3sch) to develop a proposal for the Graduate Thesis. During the first month of Thesis I, the student and their advisor should determine the thesis committee. This committee consists of three full-time Texas A&M University-Corpus Christi graduate faculty members. The committee chairperson must be a graduate faculty member in the geospatial systems engineering program. The second committee member may be a graduate faculty member in geospatial systems engineering, geographic information science, computer science, or engineering. The third member may be a graduate faculty member having distinguished professional status and expertise in the discipline of the proposed Graduate Thesis. While taking Thesis I, the student will develop a written proposal of the thesis work and present the proposal for approval. Upon approval, the student may register for GSEN 5398 Thesis II: Thesis Research (3sch). While taking GSEN 5398 Thesis II, the student will produce a written thesis that discusses their work. The student must register GSEN 5399 Thesis III: Thesis Defense during the last semester before graduation in which they are planning to defend the thesis. While taking GSEN 5399 Thesis III, the student must pass an oral final thesis defense examination. The oral exam may include any material from the program of study and will be administered by the graduate committee. It will focus heavily on the thesis. Once a student has registered for GSEN 5399 Thesis III, the student must continue to register in each consecutive semester until the thesis is completed. A student who does not complete a thesis in the semester for which the student has registered will receive a grade of IP (I Progress). If the student fails to register for an incomplete thesis in the next semester or fails their final examination, a grade of No Credit will be assigned to GSEN 5397 Thesis I (3 sch), all GSEN 5398 Thesis II (3 sch) and all GSEN 5399 Thesis III (3 sch) courses and the student must begin the process again with the submission of a new thesis proposal.

4. Coursework Only Procedure
Students must take all required courses including core courses, required courses, required courses for each track and elective courses. The required GSEN 5393 Graduate Creative Project (3sch) is taken in the final semester under the supervision by their faculty advisor.

For Additional Information

Website:
Admission Requirements

Students seeking admission to the graduate degree program in Geospatial Systems Engineering must hold a bachelor's degree from a regionally accredited institution of higher education in the United States (or an equivalent foreign institution). In addition to meeting all University requirements, students seeking admission to the graduate degree program in Geospatial Systems Engineering must submit the following to the Office of Recruitment and Admissions:

1. An application and application fee.
2. Transcripts from regionally accredited institutions (international students will be required to submit relevant international transcripts).
3. At least two reference letters.
4. Official GRE scores (within five years of the date of application; students interested in completing the Coursework Option may contact the program coordinator and request a GRE waiver).
5. An Essay (500-1000 words) discussing why you wish to get a Master's degree in Geospatial Systems Engineering and your area of interest.
6. A 60 hr. GPA of 3.0 or higher is standard.

Persons seeking admission to the MS Program in Geospatial Systems Engineering should first contact the program and identify a faculty member willing to serve as the graduate advisor. Applicants will not be admitted to the program without a graduate advisor.

Program Requirements

Requirements for the Master of Science in Geospatial Systems Engineering degree may be met through one of two options: Thesis Option or Course Only Option. Both require a minimum of 30 credit hours with offering two tracks: Geosensing Systems and UAS for Geomatics (Track 1) and Geospatial Data Science and Analytics (Track 2).

The program normally requires 18 semester-credit hours of required courses, including 9 semester-credit hours of core courses and 9 semester-credit hours of required courses for tracks. Justification for exceptions to this rule should be prepared by students, approved by students' graduate advisor, and attached to the degree plan when submitted for the department head's signature.

General Prerequisites

1. Geospatial Systems Engineering
 Every student is expected to have achieved certain minimum competencies in geospatial science before being formally admitted to the MS degree program. Students who have not earned a baccalaureate degree in Geographic Information Science, Surveying, or a similar field must consult with the coordinator of the Geospatial Systems Engineering Program to design a plan of appropriate leveling courses. Leveling courses are not counted in the above 30 semester-credit hour requirements.

2. Mathematics
 Every student must have minimum level of knowledge in mathematics equivalent to the mathematics courses in the BS in Geographic Information Science Program and will be evaluated on an individual basis by Geospatial Systems Engineering faculty.

3. English
 Every student is expected to have minimum competencies in English composition, especially in technical writing. In preparation for reports that are required in the workplace, numerous reports are required during the course of study for the degree. The proposal, the creative project and the thesis require technical writing.

Track Options

Students must choose one from the following tracks:

- Track 1 Geosensing Systems and UAS for Geomatics
- Track 2 Geospatial Data Science and Analytics

The student can choose either a Thesis Option or a Coursework Option under their chosen track.

Thesis Option

A Graduate Thesis based upon original research, supported by the scientific literature, and proved statistically, will be required under this option. The thesis option master's degree will allow a person to pursue advanced graduate study, or to obtain employment in most areas requiring a detailed knowledge of specific aspects of geospatial systems engineering. The Geospatial Systems Engineering Graduate Thesis requires a minimum of 9 hours of GSEN 5397 Thesis I (3 sch), GSEN 5398 Thesis II (3 sch) and GSEN 5399 Thesis III (3 sch) and formal publishable thesis.

Thesis Option Track 1 or 2

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Required Courses for Each Track</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Electives (approved by faculty advisor)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>GSEN 5397</td>
<td>Thesis I: Thesis Proposal</td>
<td>3</td>
</tr>
<tr>
<td>GSEN 5398</td>
<td>Thesis II: Thesis Research</td>
<td>3</td>
</tr>
<tr>
<td>GSEN 5399</td>
<td>Thesis III: Thesis Defense</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Hours 30

Coursework Option

The Coursework option allows the student to be flexible in choosing elective courses but requires the student to complete a specific geospatial systems engineering project. The curriculum will especially benefit individuals employed in scientific or technical fields who seek advancement or additional training to enhance their knowledge and skills. The Coursework Option requires 3 hours of GSEN 5393 Graduate Creative Project (3 sch) and a project report.

Project Option Track 1 or 2

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Required Courses for Each Track</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Electives (approved by faculty advisor)</td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>
Degree Requirements

Track 1: Geosensing Systems and UAS for Geomatics - Thesis Option

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSEN 6395</td>
<td>Geospatial Engineering Research</td>
<td>3</td>
</tr>
<tr>
<td>GSEN 6383</td>
<td>Advanced Geospatial Analytics</td>
<td>3</td>
</tr>
<tr>
<td>GSEN 6386</td>
<td>Remote Sensing and Image Analysis *</td>
<td>3</td>
</tr>
</tbody>
</table>

Required Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSEN 6370</td>
<td>UAS for Surveying and Mapping *</td>
<td>3</td>
</tr>
<tr>
<td>GSEN 6371</td>
<td>Geopositioning Systems and Autonomous Navigation *</td>
<td>3</td>
</tr>
<tr>
<td>GSEN 6385</td>
<td>Photogrammetric Engineering and Lidar Scanning *</td>
<td>3</td>
</tr>
</tbody>
</table>

Electives

Select 9 hours from the following Electives list except for the courses listed in above Required Courses (p. 4)

Thesis Option

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSEN 5397</td>
<td>Thesis I: Thesis Proposal</td>
<td>3</td>
</tr>
<tr>
<td>GSEN 5398</td>
<td>Thesis II: Thesis Research</td>
<td>3</td>
</tr>
<tr>
<td>GSEN 5399</td>
<td>Thesis III: Thesis Defense</td>
<td>3</td>
</tr>
</tbody>
</table>

Additional Courses

The following may be offered and substituted for any of the courses above subject to approval by the student graduate mentor or committee chair:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSEN 6390</td>
<td>Advanced Topics</td>
<td>3</td>
</tr>
<tr>
<td>GSEN 6396</td>
<td>Directed Independent Study *</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Hours 30

Track 2: Geospatial Data Science and Analytics - Thesis Option

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSEN 6395</td>
<td>Geospatial Engineering Research</td>
<td>3</td>
</tr>
<tr>
<td>GSEN 6383</td>
<td>Advanced Geospatial Analytics</td>
<td>3</td>
</tr>
<tr>
<td>GSEN 6386</td>
<td>Remote Sensing and Image Analysis *</td>
<td>3</td>
</tr>
</tbody>
</table>

Required Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSEN 6365</td>
<td>Spatial Database Design *</td>
<td>3</td>
</tr>
<tr>
<td>GSEN 6367</td>
<td>Geospatial Data Mining *</td>
<td>3</td>
</tr>
<tr>
<td>GSEN 6384</td>
<td>Geospatial Visualization Design *</td>
<td>3</td>
</tr>
</tbody>
</table>

Electives

Select 3 hours from the following Electives list except for the courses listed in above Required Courses (p. 4)

Thesis Option

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSEN 5397</td>
<td>Thesis I: Thesis Proposal</td>
<td>3</td>
</tr>
<tr>
<td>GSEN 5398</td>
<td>Thesis II: Thesis Research</td>
<td>3</td>
</tr>
<tr>
<td>GSEN 5399</td>
<td>Thesis III: Thesis Defense</td>
<td>3</td>
</tr>
</tbody>
</table>

Additional Courses

The following may be offered and substituted for any of the courses above subject to approval by the student graduate mentor or committee chair:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSEN 6390</td>
<td>Advanced Topics</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Hours 30

Track 1: Geosensing Systems and UAS for Geomatics - Project Option

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSEN 6395</td>
<td>Geospatial Engineering Research</td>
<td>3</td>
</tr>
<tr>
<td>GSEN 6383</td>
<td>Advanced Geospatial Analytics</td>
<td>3</td>
</tr>
<tr>
<td>GSEN 6386</td>
<td>Remote Sensing and Image Analysis *</td>
<td>3</td>
</tr>
</tbody>
</table>

Required Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSEN 6370</td>
<td>UAS for Surveying and Mapping *</td>
<td>3</td>
</tr>
</tbody>
</table>

Online offering

One core course in each track can be replaced with an elective course at the discretion of the graduate advisor and approval by the program coordinator.

Electives may be selected from other interdisciplinary courses, as selected in consultation with their advisory committee, to provide a broad background in geospatial systems engineering or related fields.

A maximum of six hours of approved Directed Independent Study may count toward the MS degree.

A maximum of six hours of approved Directed Independent Study may count toward the MS degree.

* Online offering
Total Hours 30

1

One core course in each track can be replaced with an elective course at the discretion of the graduate advisor and approval by the program coordinator.

2

Electives may be selected from other interdisciplinary courses, as selected in consultation with their advisory committee, to provide a broad background in geospatial systems engineering or related fields.

3

A maximum of six hours of approved Directed Independent Study may count toward the MS degree.

* Online offering

No more than six hours of approved electives may come from courses taken at another university. Credit from a master’s degree earned at another institution will not be applied to a second master’s degree at Texas A&M University-Corpus Christi.

Courses

GSEN 5355 DESIGN-ANALYS GIS APPLICATIONS
3 Semester Credit Hours (3 Lecture Hours)

DESIGN-ANALYSIS GIS APPLICATIONS

Programming course focusing on the design and implementation of GIS scripts. Topics covered include GIS scripts, GIS tool creation, and user interface design and implementation.

GSEN 5365 SPATIAL DATABASE DESIGN
3 Semester Credit Hours (3 Lecture Hours)

An introduction to spatial database principles and the practical skills of design implement, and use of spatial databases. Topics covered include basic database model, spatial database design and management, spatial indexes, and spatial data mining. Advanced knowledge and skills in spatial databases are also covered.

GSEN 5381 CADASTRAL INFOSYSTEMS DESIGN
3 Semester Credit Hours (3 Lecture Hours)

A review of the evolution of European cadastral systems and land records traditions and alternatives. Examination of the goals and purposes of land tenure systems with attention to social, political, legal, economic, organizational, and technical issues. Exploration of U.S. modernization efforts and the problems of developing countries.
GSEN 5382 PLCY-LEGL ASPECT SPATL INFOSYS
3 Semester Credit Hours (3 Lecture Hours)
POLICY AND LEGAL ASPECTS OF SPATIAL INFORMATION SYSTEMS
A study of the current and emerging status of computer law in electronic
environments. Covers issues related to: privacy, freedom of information,
confidentiality, copyright, and legal liability; the impact of statute and case
law on use of digital databases and spatial databases; and research of
legal options of conflicts related to spatial data.

GSEN 5383 ADV GEOSPATIAL ANALYSIS DESIGN
3 Semester Credit Hours (3 Lecture Hours)
ADVANCED GEOSPATIAL ANALYSIS AND DESIGN An advanced
course that focuses on spatial analysis and modeling in GIS. Topics covered
include exploratory analysis of spatial data, network analysis, exploring
spatial point patterns, area objects and spatial autocorrelation, spatial
interpolation, and spatial regression. New approaches to spatial analysis
are also covered.

GSEN 5384 GEOSPATIAL VISUALIZATION DESIGN
3 Semester Credit Hours (3 Lecture Hours)
GEOSPATIAL VISUALIZATION DESIGN Basic elements of thematic
cartography, cartographic theory, and cartographic projections.
Integration of cartographic principles with GIS visualization. Principles of
map design with GIS data.

GSEN 5385 ANALY-DIGITAL PHOTOGRAMMET ENG
3 Semester Credit Hours (3 Lecture Hours)
ANALYTICAL AND DIGITAL PHOTOGRAMMETRIC ENGINEERING A study
of the mathematical and geometric models of modern photogrammetry.
Covers principles of stereoscopic vision, collinearity, coplanarity, epipolar
geometry, ground control densification and extension by analytical
aerotriangulation. Explores automation in photogrammetric procedures -
digital aerotriangulation, automated data capture.

GSEN 5386 PROBLEMS -REMOTE SENSING ENVIR
3 Semester Credit Hours (3 Lecture Hours)
PROBLEMS-REMOTE SENSING OF THE ENVIRONMENT Advanced
problems in photo interpretation, photogrammetry and remote sensing
within a GIS. Topics include utilization of expert computer systems,
knowledge based environmental modeling, macro languages and spatial
modeling languages. Operations and laboratories will cover mathematical
operations on raster layers, convolution filtering, neighborhood analysis,
principal components, proximity, contiguity and descriptor table
manipulation. Final project includes the development of a remote sensing
of the environment software program with a graphical user interface.

GSEN 5393 Graduate Creative Project
1-3 Semester Credit Hours
An applied research group project in geospatial surveying engineering
from problem definition to implementation in an area provided by faculty
in the course of study. Fall, Spring, and Summer.

GSEN 5397 Thesis I: Thesis Proposal
3 Semester Credit Hours (3 Lecture Hours)
This course is for Geospatial Systems Engineering MS students choosing
the thesis option.

GSEN 5398 Thesis II: Thesis Research
3 Semester Credit Hours
This course is for Geospatial Systems Engineering MS students choosing
the thesis option. Students will register for this course after completing
GSEN 5397 Thesis I: Thesis Proposal. This course is only credit/no credit.

GSEN 5399 Thesis III: Thesis Defense
3 Semester Credit Hours (3 Lecture Hours)
This course is for Geospatial Systems Engineering MS students choosing
the thesis option. Students will register for this course after completing
GSEN 5398 Thesis II: Thesis Research. This course is only offered on
a satisfactory/unsatisfactory (S/U) basis only, with grade of IP until
completed. Credit will not be recorded until thesis is accepted by the
Graduate Project Committee. May be repeated for credit. Offered Fall,
Spring, and Summer semesters.

Prerequisite: GSEN 5398.

GSEN 6330 Spatial Systems Science
3 Semester Credit Hours (3 Lecture Hours)
Introduction and advanced usage of mapping datums, coordinate
systems, and accuracy requirements for geographic information
systems (GIS). Use of GIS tools to investigate statistical patterns and
relationships among maps and geo-databases. Derivation of new maps
and analysis based on spatial context, patterns, surface configuration,
proximity, connectivity and flows.

GSEN 6355 Geospatial Programming Techniques
3 Semester Credit Hours (3 Lecture Hours)
Course teaches programming techniques in geospatial fields, such as
how to automate GIS tasks using Python and other scripting languages.
Automation can make your work easier, faster, and more accurate, and
knowledge of a scripting language is a highly desired skill in GIS analysts.
Fall.

GSEN 6356 Programming for Geospatial Data Science
3 Semester Credit Hours (3 Lecture Hours)
Handling, processing and analyzing spatial data in an open and
reproducible way is critical in the emergence of geospatial data science.
Various open source packages and tools for geospatial data and
process are available and they provide an effective solution for flexibility,
reproducibility and transparency in geospatial research and analysis.
This course focuses on various programming skills in handling and
manipulating spatial data through open source environments. Creating
spatial database and queries, exploring spatial data, modeling spatial
data, and visualizing spatial data through open source packages will be
covered.

GSEN 6365 Spatial Database Design
3 Semester Credit Hours (3 Lecture Hours)
This course will focus on spatial database principles and the practical
skills of design, implementation, and use of spatial databases. This
course will first cover fundamentals of relational database design,
and then focus on design and management of spatial databases
utilizing geodatabase models. In addition, case studies of geodatabase
design models in several applications will also be covered. This course
is intended for students who want to design, create, maintain and
manipulate data from a geospatial database. Spring.

GSEN 6367 Geospatial Data Mining
3 Semester Credit Hours (3 Lecture Hours)
Geospatial data mining is the process of automatically discovering
interesting and useful spatial patterns in large geospatial datasets. This
course begins by covering fundamental concepts and techniques in
data mining. Specific topics covered include classification, association
analysis, and cluster analysis. It then focuses on using these data mining
techniques for handling spatial, temporal and spatial-temporal data. In
addition, the data mining tools to implement applications in geoscience
will also be covered. Spring.
GSEN 6370 UAS for Surveying and Mapping
3 Semester Credit Hours (3 Lecture Hours)
Introduces the fundamentals of mapping with small Unmanned Aircraft Systems (sUAS) using digital imaging sensors to produce high resolution, accurate geospatial surveying products. The course will cover the full spectrum of UAS mapping including technology, current regulations, operational factors, flight design, photogrammetric data processing, and data fidelity. Supporting concepts will include georeferencing and ground control, 3D reconstruction with structure-from-motion photogrammetry, orthorectification and image mosaicking, accuracy assessment, and current developments in UAS for geomatics. Processing and analysis workflows using commercial and open-source software will be conducted to transform UAS image sequences into geospatial data products, extract analytics, assess results, and optimize output. Spring.

GSEN 6371 Geopositioning Systems and Autonomous Navigation
3 Semester Credit Hours (3 Lecture Hours)
Addresses the foundations and computational techniques of Global Navigation Satellite Systems (GNSS) and inertial measurement units (IMUs) for autonomous navigation applications. Specifically, the course will cover concepts and principles of GNSS signal structures and the derivation of observables; error sources and corrections; point, differential, and kinematic positioning techniques; IMU linear and angular dynamics modeling; mechanization of inertial navigation and error propagation; global/local coordinate frames and conversion; and filtering techniques for GNSS/IMU integration. The course also covers current and future capabilities of emerging geopositioning systems as they relate to autonomous navigation and mobile devices. Fall.

GSEN 6380 Applied Geospatial Statistics
3 Semester Credit Hours (3 Lecture Hours)
This course will focus on geospatial statistics methods particularly multivariate statistics and applications of the statistical procedures to research geospatial problems. Research on geospatial problems often requires the application of multivariate statistical methods to produce new insight. Various existing statistic software is available to conduct multivariate statistical analysis, however, the interpretation of the results rely on solid understanding of statistic principles and theories. This course is intended for students who want to apply statistical methods to research geospatial problems.

GSEN 6381 Cadastral Information Systems Design
3 Semester Credit Hours (3 Lecture Hours)
A review of the evolution of European cadastral systems and land records traditions and alternatives. Examination of the goals and purposes of land tenure systems with attention to social, political, legal, economic, organizational, and technical issues. Exploration of U.S. modernization efforts and the problems of developing countries. Spring odd years.

GSEN 6382 Policy and Legal Aspects of Spatial Information Systems
3 Semester Credit Hours (3 Lecture Hours)
A study of the current and emerging status of computer law in electronic environments. Covers issues related to: privacy, freedom of information, confidentiality, copyright, and legal liability; the impact of statute and case law on use of digital databases and spatial databases; and research of legal options of conflicts related to spatial data. Additional description: study of specific court cases specific to Texas boundary law. Introduction into International Boundaries and Treaties. Fall.

GSEN 6383 Advanced Geospatial Analytics
3 Semester Credit Hours (3 Lecture Hours)
This course will focus on the theory, techniques, and applications of advanced geospatial analytics. Topics covered include spatial point patterns, network analysis, area objects and spatial autocorrelation, and spatial interpolation. New approaches to geospatial analytics will also be covered. This course emphasizes the methods and the applied side of geospatial analytics that can be useful in students' own theses or projects for their current or potential employers.

GSEN 6384 Geospatial Visualization Design
3 Semester Credit Hours (3 Lecture Hours)
This course will ensure that students understand and apply cartographic theory for visual communication and visual thinking, and be able to create, evaluate, and critique reference and thematic maps using GIS software. Fall.

GSEN 6385 Photogrammetric Engineering and Lidar Scanning
3 Semester Credit Hours (3 Lecture Hours)
A study of the analytical and systems engineering foundations of airborne photogrammetry and geodetic imaging technologies for 2D and 3D mapping of natural and built environments. The course covers principles of digital imaging, camera calibration, stereo and multi-view photogrammetry, analytical photogrammetry, structure-from-motion, light detection and ranging (lidar) systems, and emergent scanning and imaging approaches. The course also details photogrammetric and lidar data processing, point cloud analysis, and applications.

GSEN 6386 Remote Sensing and Image Analysis
3 Semester Credit Hours (3 Lecture Hours)
Addresses the interpretation, processing and analysis techniques of remotely sensed data acquired by orbital and sub-orbital platforms. Physical principles and imaging mechanisms, remote sensing systems, data characteristics, image processing, and information extraction methods will be covered. Topics include passive optical imaging with multispectral, hyperspectral, and thermal sensing; active imaging with radar sensing; image corrections and rectification; spatial/frequency transforms and image filtering; image classification and feature extraction; and image processing with machine learning techniques. Applications in the course will be focused on geomatics and monitoring of natural and built environments. Fall.

GSEN 6390 Advanced Topics
3 Semester Credit Hours (3 Lecture Hours)
Variable content study of specific areas of geospatial surveying engineering. May be repeated for credit when topics vary. Offered on sufficient demand.

GSEN 6395 Geospatial Engineering Research
3 Semester Credit Hours (3 Lecture Hours)
Seminar in reading and critical evaluation of academic literature in the fields relating to geospatial engineering. Research methods for geospatial engineering will be introduced. Student will design, implement, and evaluate an advanced, contemporary geospatial engineering technology to solve a geospatial problem.

GSEN 6396 Directed Independent Study
3 Semester Credit Hours (3 Lecture Hours)
Study in areas of current interest.